AI Article Synopsis

  • The evolution of network technologies has led to more sophisticated cyberattacks, making traditional security measures less effective and increasing the need for reliable Intrusion Detection Systems (IDS).
  • IDS faces challenges like high dimensionality and class imbalance, which can slow down detection and reduce its efficiency, making feature selection crucial for identifying key factors in intrusion detection.
  • This research evaluates four feature evaluation measures—Consistency, Correlation, Information, and Distance—to recommend the best one for improving IDS performance across different types of attacks, using various classifiers and testing results on benchmark datasets.

Article Abstract

The revolutionary advances in network technologies have spearheaded the design of advanced cyberattacks to surpass traditional security defense with dreadful consequences. Recently, Intrusion Detection System (IDS) is considered as a pivotal element in network security infrastructures to achieve solid line of protection against cyberattacks. The prime challenges presented to IDS are curse of high dimensionality and class imbalance that tends to increase the detection time and degrade the efficiency of IDS. As a result, feature selection plays an important role in enabling to identify the most significant features for intrusion detection. Although, several feature evaluation measures are being proposed for feature selection in literature, there is no consensus on which measures are best for intrusion detection. Therein, this work aims at recommending the most appropriate feature evaluation measure for building an efficient IDS. In this direction, four filter-based feature evaluation measures that stem from different theories such as Consistency, Correlation, Information and Distance are investigated for their potential implications in enhancing the detection ability of IDS model for different classes of attacks. Along with this, the influence of the selected features on classification accuracy of an IDS model is analyzed using four different categories of classifiers namely, K-nearest neighbors (KNN), Random Forest (RF), Support Vector Machine (SVM) and Deep Belief Network (DBN). Finally, a two-step statistical significance test is conducted on the experimental results to determine which feature evaluation measure contributes statistically significant difference in IDS performance. All the experimental comparisons are performed on two benchmark intrusion detection datasets, NSL-KDD and UNSW-NB15. In these experiments, consistency measure has best influenced the IDS model in improving the detection ability with regard to detection rate (DR), false alarm rate (FAR), kappa statistics (KS) and identifying the most significant features for intrusion detection. Also, from the analysis results, it is revealed that RF is the ideal classifier to be used in conjunction with any of these four feature evaluation measures to achieve better detection accuracy than others. From the statistical results, we recommend the use of consistency measure for designing an efficient IDS in terms of DR and FAR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355994PMC
http://dx.doi.org/10.1016/j.heliyon.2020.e04262DOI Listing

Publication Analysis

Top Keywords

feature evaluation
24
intrusion detection
24
evaluation measures
16
ids model
12
detection
11
ids
9
feature
8
feature selection
8
features intrusion
8
evaluation measure
8

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.

Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.

View Article and Find Full Text PDF

Background: Sepsis is a severe complication in leukemia patients, contributing to high mortality rates. Identifying early predictors of sepsis is crucial for timely intervention. This study aimed to develop and validate a predictive model for sepsis risk in leukemia patients using machine learning techniques.

View Article and Find Full Text PDF

Introduction: Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor microenvironment, particularly in BC. However, the glycosylation-related genes associated with TNBC have not yet been defined.

View Article and Find Full Text PDF

Background: Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose a significant global healthcare challenge, particularly due to the high mortality risk associated with septic shock. This study aimed to develop and validate a machine learning-based model to predict the risk of MDR-KP-associated septic shock, enabling early risk stratification and targeted interventions.

Methods: A retrospective analysis was conducted on 1,385 patients with MDR-KP infections admitted between January 2019 and June 2024.

View Article and Find Full Text PDF

Tuberculous meningitis diagnosis and treatment: classic approaches and high-throughput pathways.

Front Immunol

January 2025

Rehabilitation Medicine Department, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha, Changsha, China.

Tuberculous meningitis (TBM), a severe form of non-purulent meningitis caused by (Mtb), is the most critical extrapulmonary tuberculosis (TB) manifestation, with a 30-40% mortality rate despite available treatment. The absence of distinctive clinical symptoms and effective diagnostic tools complicates early detection. Recent advancements in nucleic acid detection, genomics, metabolomics, and proteomics have led to novel diagnostic approaches, improving sensitivity and specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!