Background: Small supernumerary marker chromosomes (sSMCs) are rare structural abnormalities in the population; however, they are frequently found in children or fetuses with hypoevolutism and infertile adults. sSMCs are usually observed first by karyotyping, and further analysis of their molecular origin is important in clinical practice. Next-generation sequencing (NGS) combined with Sanger sequencing helps to identify the chromosomal origins of sSMCs and correlate certain sSMCs with a specific clinical picture.
Results: Karyotyping identified 75 sSMCs in 74,266 samples (0.1% incidence). The chromosomal origins of 27 of these sSMCs were detected by sequencing-related techniques (NGS, MLPA and STR). Eight of these sSMCs are being reported for the first time. sSMCs mainly derived from chromosomal X, Y, 15, and 18, and some sSMC chromosomal origins could be correlated with clinical phenotypes. However, the chromosomal origins of the remaining 48 sSMC cases are unknown. Thus, we will develop a set of economical and efficient methods for clinical sSMC diagnosis.
Conclusions: This study details the comprehensive characterization of 27 sSMCs. Eight of these sSMCs are being reported here for the first time, providing additional information to sSMC research. Identifying sSMCs may reveal genotype-phenotype correlations and integrate genomic data into clinical care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362453 | PMC |
http://dx.doi.org/10.1186/s13039-020-00494-2 | DOI Listing |
PLoS One
January 2025
Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki, Nigeria.
GigaByte
December 2024
Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
is an amphicarpic plant in the Brassicaceae family. Plants develop two fruit types, one above and another below ground. This rare trait is associated with octoploidy in .
View Article and Find Full Text PDFEMBO Rep
January 2025
Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
microRNAs (miRNAs) are important post-transcriptional regulators that activate silencing mechanisms by annealing to mRNA transcripts. While plant miRNAs match their targets with nearly-full complementarity leading to mRNA cleavage, miRNAs in most animals require only a short sequence called 'seed' to inhibit target translation. Recent findings showed that miRNAs in cnidarians, early-branching metazoans, act similarly to plant miRNAs, by exhibiting full complementarity and target cleavage; however, it remained unknown if seed-based regulation was possible in cnidarians.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
The assembly of repressive heterochromatin in eukaryotic genomes is crucial for silencing lineage-inappropriate genes and repetitive DNA elements. Paradoxically, transcription of repetitive elements within constitutive heterochromatin domains is required for RNA-based mechanisms, such as the RNAi pathway, to target heterochromatin assembly proteins. However, the mechanism by which heterochromatic repeats are transcribed has been unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China. Electronic address:
The three-amino-acid-loop-extension (TALE) homeodomain transcription factor family, including the KNOX and BELL subfamilies, is one of the largest gene families in plants. This family encodes plant-specific transcription factors that play critical roles in regulating plant growth, development, and stress responses. However, their interaction network, as well as resistant functional mechanism in is rarely reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!