Much of the research in biology aims to understand the origin of diversity. Naturally, ecological diversity was the first object of study, but we now have the necessary tools to probe diversity at molecular scales. The inherent differences in how we study diversity at different scales caused the disciplines of biology to be organized around these levels, from molecular biology to ecology. Here, we illustrate that there are key properties of each scale that emerge from the interactions of simpler components and that these properties are often shared across different levels of organization. This means that ideas from one level of organization can be an inspiration for novel hypotheses to study phenomena at another level. We illustrate this concept with examples of events at the molecular level that have analogs at the organismal or ecological level and vice versa. Through these examples, we illustrate that biological processes at different organization levels are governed by general rules. The study of the same phenomena at different scales could enrich our work through a multidisciplinary approach, which should be a staple in the training of future scientists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359829PMC
http://dx.doi.org/10.1111/eva.12961DOI Listing

Publication Analysis

Top Keywords

biological processes
8
molecular biology
8
study phenomena
8
similarities biological
4
processes bridge
4
bridge ecology
4
molecular
4
ecology molecular
4
biology
4
biology biology
4

Similar Publications

Introduction: Patients after surgical correction of Tetralogy of Fallot (ToF) often show adverse cardiac remodeling. To better understand the underlying biological processes, we studied the relation between changes in blood biomarkers and changes in biventricular size and function as assessed by cardiac magnetic resonance imaging (CMR).

Methods: This study included 50 ToF patients, who underwent blood biomarker and CMR analysis at least twice between 2002 and 2018.

View Article and Find Full Text PDF

Background: The geroscience hypothesis posits that aging biological processes contribute to many age-related deficits, including the accumulation of multiple chronic diseases. Though only one facet of mitochondrial function, declines in muscle mitochondrial bioenergetic capacities may contribute to this increased susceptibility to multimorbidity.

Methods: The Study of Muscle, Mobility and Aging (SOMMA) assessed muscle mitochondrial energetics in 764 older adults (mean age =76.

View Article and Find Full Text PDF

Recently, interest has surged in the environmental and biomedical applications of two-dimensional transition metal borides, commonly referred to as MBenes. These materials have emerged as promising candidates for energy storage devices, such as batteries and supercapacitors. Additionally, MBenes have shown remarkable catalytic activity due to their high surface area and tunable electronic properties.

View Article and Find Full Text PDF

Maintaining a balance of inorganic phosphate (Pi) is vital for cellular functionality due to Pi's essential role in numerous biological processes. Proper phosphate levels are managed through Pi import and export, facilitated by specific Pi transport proteins. Although the mechanisms of Pi import have been extensively studied, the processes governing Pi export remain less understood.

View Article and Find Full Text PDF

Spatially mapping the transcriptome and proteome in the same tissue section can significantly advance our understanding of heterogeneous cellular processes and connect cell type to function. Here, we present Deterministic Barcoding in Tissue sequencing plus (DBiTplus), an integrative multi-modality spatial omics approach that combines sequencing-based spatial transcriptomics and image-based spatial protein profiling on the same tissue section to enable both single-cell resolution cell typing and genome-scale interrogation of biological pathways. DBiTplus begins with reverse transcription for cDNA synthesis, microfluidic delivery of DNA oligos for spatial barcoding, retrieval of barcoded cDNA using RNaseH, an enzyme that selectively degrades RNA in an RNA-DNA hybrid, preserving the intact tissue section for high-plex protein imaging with CODEX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!