A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoscale Organization of a Platinum(II) Acetylide Cholesteric Liquid Crystal Molecular Glass for Photonics Applications. | LitMetric

The fabrication, molecular structure, and spectroscopy of a stable cholesteric liquid crystal platinum acetylide glass obtained from -Pt(PEt)(C≡C-CH-C≡N)(C≡C-CH-COO-Cholesterol), are described and designated as PE1-CN-Chol. Polarized optical microscopy, differential scanning calorimetry, and wide-angle X-ray scattering experiments show room temperature glassy/crystalline texture with crystal formation upon heating to 165 °C. Further heating results in conversion to cholesteric phase. Cooling to room temperature leads to the formation of a cholesteric liquid crystal glass. Scanning tunneling microscopy of a PE1-CN-Chol monolayer reveals self-assembly at the solid-liquid interface with an array of two molecules arranged in pairs, oriented head-to-head through the CN groups, giving rise to a lamella arrangement. The lamella structure obtained from molecular dynamics calculations shows a clear phase separation between the conjugated platinum acetylide and the hydrophobic cholesterol moiety with the lamellae separation distance being 4.0 nm. Ultrafast transient absorption and flash photolysis spectra of the glass show intersystem crossing to the triplet state occurring within 100 ps following excitation. The triplet decay time of the film compared to aerated and deoxygenated solutions is consistent with oxygen quenching at the film surface but not within the film. The high chromophore concentration, high glass thermal stability, and long triplet lifetime in air show that these materials have potential as nonlinear absorbing materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357594PMC
http://dx.doi.org/10.1002/adfm.201910562DOI Listing

Publication Analysis

Top Keywords

cholesteric liquid
12
liquid crystal
12
platinum acetylide
8
room temperature
8
glass
5
nanoscale organization
4
organization platinumii
4
platinumii acetylide
4
cholesteric
4
acetylide cholesteric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!