Predicting where crop pests and diseases can occur, both now and in the future under different climate change scenarios, is a major challenge for crop management. One solution is to estimate the fundamental thermal niche of the pest/disease to indicate where establishment is possible. Here, we develop methods for estimating and displaying the fundamental thermal niche of pests and pathogens and apply these methods to Huanglongbing (HLB), a vector-borne disease that is currently threatening the citrus industry worldwide.We derive a suitability metric based on a mathematical model of HLB transmission between tree hosts and its vector , and incorporate the effect of temperature on vectortraits using data from laboratory experiments performed at different temperatures. We validate the model using data on the historical range of HLB.Our model predicts that transmission of HLB is possible between 16 and 33°C with peak transmission at ~25°C. The greatest uncertainty in our suitability metric is associated with the mortality of the vectors at peak transmission, and fecundity at the edges of the thermal range, indicating that these parameters need further experimental work.We produce global thermal niche maps by plotting how many months each location is suitable for establishment of the pest/disease. This analysis reveals that the highest suitability for HLB occurs near the equator in large citrus-producing regions, such as Brazil and South-East Asia. Within the Northern Hemisphere, the Iberian peninsula and California are HLB suitable for up to 7 months of the year and are free of HLB currently. We create a thermal niche map which indicates the places at greatest risk of establishment should a crop disease or pest enter these regions. This indicates where surveillance should be focused to prevent establishment. Our mechanistic method can be used to predict new areas for Huanglongbing transmission under different climate change scenarios and is easily adapted to other vector-borne diseases and crop pests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367095PMC
http://dx.doi.org/10.1111/1365-2664.13455DOI Listing

Publication Analysis

Top Keywords

thermal niche
20
fundamental thermal
12
crop pests
12
pests diseases
8
climate change
8
change scenarios
8
suitability metric
8
peak transmission
8
thermal
6
hlb
6

Similar Publications

Effect of temperature on circadian clock functioning of trees in the context of global warming.

New Phytol

January 2025

Instituto de Investigaciones Forestales y Agropecuarias Bariloche, Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Bariloche - Consejo Nacional de Investigaciones Científicas y Técnicas (INTA EEA Bariloche-CONICET), San Carlos de Bariloche, Río Negro, R8403DVZ, Argentina.

Plant survival in a warmer world requires the timely adjustment of biological processes to cyclical changes in the new environment. Circadian oscillators have been proposed to contribute to thermal adaptation and plasticity. However, the influence of temperature on circadian clock performance and its impact on plant behaviour in natural ecosystems are not well-understood.

View Article and Find Full Text PDF

The ongoing rise in global temperatures poses significant challenges to ecosystems, particularly impacting bacterial communities that are central to biogeochemical cycles. The resilience of wild mesophilic bacteria to temperature increases of 2-4 °C remains poorly understood. In this study, we conducted experimental evolution on six wild strains from two lineages ( and ) to examine their thermal adaptation strategies.

View Article and Find Full Text PDF

Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans.

Biology (Basel)

November 2024

Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Organisms occupy diverse ecological niches worldwide, each with characteristics finely evolved for their environments. Crustaceans residing in deep-sea hydrothermal vents, recognized as one of Earth's extreme environments, may have adapted to withstand severe conditions, including elevated temperatures and pressure. This study compares the exoskeletons of two vent crustaceans (bythograeid crab sp.

View Article and Find Full Text PDF

Thermal sensitivity and niche plasticity of generalist and specialist leaf-endophytic bacteria in Mangrove Kandelia obovata.

Commun Biol

January 2025

Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.

Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.

View Article and Find Full Text PDF

Sub-zero soil CO respiration in biostimulated hydrocarbon-contaminated cold-climate soil can be linked to the soil-freezing characteristic curve.

Environ Sci Pollut Res Int

January 2025

Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Engineering Building, Saskatoon, SK, S7N 5A9, Canada.

Extending unfrozen water availability is critical for stress-tolerant bioremediation of contaminated soils in cold climates. This study employs the soil-freezing characteristic curves (SFCCs) of biostimulated, hydrocarbon-contaminated cold-climate soils to efficiently address the coupled effects of unfrozen water retention and freezing soil temperature on sub-zero soil respiration activity. Freezing-induced soil respiration experiments were conducted under the site-relevant freezing regime, programmed from 4 to - 10 °C at a seasonal soil-freezing rate of - 1 °C/day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!