A novel study on biodegradation of 30 mg L of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) mixture (celecoxib, diclofenac and ibuprofen) by two wood-rot fungi; Ganoderma applanatum (GA) and Laetiporus sulphureus (LS) was investigated for 72 h. The removal efficiency of celecoxib, diclofenac and ibuprofen were 98, 96 and 95% by the fungal consortium (GA + LS). Although, both GA and LS exhibited low removal efficiency (61 and 73% respectively) on NSAIDs. However, 99.5% degradation of the drug mixture (NSAIDs) was achieved on the addition of the fungal consortium (GA + LS) to the experimental set-up. Overall, LS exhibited higher degradation efficiency; 92, 87, 79% on celecoxib, diclofenac and ibuprofen than GA with 89, 80 and 66% respectively. Enzyme analyses revealed significant induction of 201, 180 and 135% in laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP) by the fungal consortium during degradation of the NSAIDs respectively. The experimental data showed the best goodness of fit when subjected to Langmuir (R = 0.980) and Temkin (R = 0.979) isotherm models which suggests monolayer and heterogeneous nature exhibited by the mycelia during interactions with NSAIDs. The degradation mechanism followed pseudo-second-order kinetic model (R = 0.987) indicating the strong influence of fungal biomass in the degradation of NSAIDs. Furthermore, Gas Chromatography-Mass Spectrometry (GCMS) and High-Performance Liquid Chromatography (HPLC) analyses confirmed the degraded metabolic states of the NSAIDs after treatment with GA, LS and consortium (GA + LS). Hence, the complete removal of NSAIDs is best achieved in an economical and eco-friendly way with the use of fungi consortium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.110997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!