Comparative assessment of modeling and experimental data of ammonia removal from pre-digested chicken manure.

J Environ Sci Health A Tox Hazard Subst Environ Eng

Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.

Published: October 2020

The aim of this study was to interpret the development of Anammox activity by a mathematical model in an UASB reactor -originally inoculated with methanogenic granules- at which Anammox progress has been also experimentally observed while treating chicken manure digestate. Since ammonium is derived from anaerobic degradation of nitrogenous compounds in chicken manure similar to any other nitrogen-rich organic wastes; the reactor was operated intentionally at favorable conditions [i.e.; with external nitrite source for NH :NO ≅1.0] in order to make Anammox process to prevail as operation continued. Results indicated significant ammonia removals (60% on average) although influent concentration was gradually increased up to 200 mg L-. A modeling exercise has been undertaken to investigate the performance of the laboratory scale UASB reactor. In this scope, the experimental results were modeled by using Mantis2 model within GPS-X 6.5 simulation software that included several built in libraries. Accordingly, effluent chemical oxygen demand (COD) and total ammonia nitrogen (TAN) concentrations could be predicted with reasonably good accuracy demonstrating successful calibration. The regression coefficient ( ) and mean relative absolute error (MRAE) parameters were found as 0.66 and 16% and 0.70 and 19%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2020.1794206DOI Listing

Publication Analysis

Top Keywords

chicken manure
12
uasb reactor
8
comparative assessment
4
assessment modeling
4
modeling experimental
4
experimental data
4
data ammonia
4
ammonia removal
4
removal pre-digested
4
pre-digested chicken
4

Similar Publications

The impact of antibiotic therapy on the spread of antibiotic resistance genes (ARGs) and its relationship to gut microbiota remains unclear. This study investigated changes in ARGs, mobile genetic elements (MGEs), and gut microbial composition following tilmicosin administration in pigs. Thirty pigs were randomly divided into control (CK), low-concentration (0.

View Article and Find Full Text PDF

Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers.

Sci Total Environ

January 2025

Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.

View Article and Find Full Text PDF

Aerobic composting with hydrothermal carbonization aqueous phase conditioning: Stabilized active gaseous nitrogen emissions.

J Hazard Mater

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The losses of reactive gaseous nitrogen (N), including ammonia (NH) and nitrous oxide (NO), represent a pressing environmental issue during composting. However, the impact of hydrothermal carbonization aqueous phase (HAP) on compost gaseous N emissions and the underlying mechanisms remain largely unexplored. Herein, Quercus acutissima leaves-derived HAP and its modified HAP (MHAP) were added to the chicken manure compost at 5 % (w/w) and 10 % (w/w) applied rates to observe changes in NH and NO fluxes, compost properties and bacterial communities.

View Article and Find Full Text PDF

Avian coccidiosis is one of the many disorders that seriously harm birds' digestive systems. Nowadays the light is shed on using Phytochemical/herbal medicines as alternative natural anti-coccidial chemical-free standards. Consequently, this study aimed to investigate the impact of lawsonia inermis powder (LIP), and Acacia nilotica aqueous extract (ANAE), on growth performance, serum biochemical, antioxidant status, cytokine biomarkers, total oocyst count and intestinal histopathology of broiler chickens challenged with coccidiosis.

View Article and Find Full Text PDF

More inputs of antibiotics into groundwater but less into rivers as a result of manure management in China.

Environ Sci Ecotechnol

January 2025

Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands.

Article Synopsis
  • Antibiotics are widely used in livestock, leading to environmental contamination of rivers and groundwater, yet there's insufficient data on their sources and distribution.
  • A new model, MARINA-Antibiotics (China-1.0), estimates antibiotic flows from livestock into China's rivers and groundwater, revealing that antibiotic inputs reduced in rivers but increased in groundwater from 2010 to 2020.
  • Key findings show fluoroquinolones are the main contributors to river pollution, while sulfonamides dominate groundwater pollution, indicating a need for improved strategies to address groundwater contamination due to livestock practices.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!