Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Methods for the analysis of one-factor randomized groups designs with ordered treatments are well established, but they do not apply in the case of more complex experiments. This article describes ordered treatment methods based on maximum-likelihood and robust estimation that apply to designs with clustered data, including those with a vector of covariates. The contrast coefficients proposed for the ordered treatment estimates yield higher power than those advocated by Abelson and Tukey; the proposed robust estimation method is shown (using theory and simulation) to yield both high power and robustness to outliers. Extensions for nonmonotonic alternatives are easily obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11336-020-09713-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!