Psychrophilic Pseudomonas helmanticensis proteome under simulated cold stress.

Cell Stress Chaperones

Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.

Published: November 2020

Himalayan mountains are distinctly characterized for their unique climatic and topographic variations; therefore, unraveling the cold-adaptive mechanisms and processes of native life forms is always being a matter of concern for scientific community. In this perspective, the proteomic response of psychrophilic diazotroph Pseudomonas helmanticensis was studied towards low-temperature conditions. LC-MS-based analysis revealed that most of the differentially expressed proteins providing cold stress resistance were molecular chaperons and cold shock proteins. Enzymes involved in proline, polyamines, unsaturated fatty acid biosynthesis, ROS-neutralizing pathways, and arginine degradation were upregulated. However, proteins involved in the oxidative pathways of energy generation were severalfold downregulated. Besides these, the upregulation of uncharacterized proteins at low temperature suggests the expression of novel proteins by P. helmanticensis for cold adaptation. Protein interaction network of P. helmanticensis under cold revealed that Tif, Tig, DnaK, and Adk were crucial proteins involved in cold adaptation. Conclusively, this study documents the proteome and protein-protein interaction network of the Himalayan psychrophilic P. helmanticensis under cold stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591641PMC
http://dx.doi.org/10.1007/s12192-020-01139-4DOI Listing

Publication Analysis

Top Keywords

cold stress
12
helmanticensis cold
12
pseudomonas helmanticensis
8
proteins involved
8
cold adaptation
8
interaction network
8
cold
7
proteins
6
helmanticensis
5
psychrophilic pseudomonas
4

Similar Publications

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

Tree-ring width chronologies of Du Tour from near the upper treeline in the Western Sayan, Southern Siberia are found to have an exceptional (below mean-3SD) multi-year drop near 1700 CE, highlighted by the seven narrowest-ring years in a 1524-2022 regional chronology occurring in the short span of one decade. Tree rings are sometimes applied to reconstruct seasonal air temperatures; therefore, it is important to identify other factors that may have contributed to the growth suppression. The spatiotemporal scope of the "nosedive" in tree growth is investigated with a large network of (14 sites) and Ledeb.

View Article and Find Full Text PDF

Life History Strategies of the Winter Annual Plant (Asteraceae) in a Cold Desert Population.

Plants (Basel)

January 2025

Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China.

Turcz. is a winter annual species of the Asteraceae family, distributed in sandy areas of northern China, and is crucial for wind avoidance and sand fixation. To understand the inter- and intra-annual population dynamics of in its cold desert habitats, we conducted long- and short-term demographic studies to investigate the timing of germination, seedling survival, soil seed bank and seed longevity of natural populations on the fringe of the Tengger Desert.

View Article and Find Full Text PDF

In order to explore the water and fertilizer requirements of eggplants in the western oasis of the river, the experiment was conducted in Minle County of Gansu Province in 2022 and 2023 under three water stress gradients and three nitrogen application levels: (1) moderate water stress (W, 50-60% in field water capacity [FC]), mild water stress (W, 60-70% in FC), and full irrigation (W, 70-80% in FC); (2) low nitrogen (N, 215 kg·ha), medium nitrogen (N, 270 kg·ha), and high nitrogen (N, 325 kg·ha). Moderate and mild water stress were applied during eggplant flowering and fruiting while full irrigation was provided during the other growth stages; a control class (CK) was established with full irrigation throughout the whole plant growth without nitrogen application. This study investigated the effects of water-saving and nitrogen reduction on the yield, quality, and water-nitrogen use efficiency of eggplants in a cold and arid environment in the Hexi Oasis irrigation area of China.

View Article and Find Full Text PDF

The Gene Enhances the Cold Resistance of .

Plants (Basel)

January 2025

College of Life Sciences, Shihezi University, Shihezi 832000, China.

Plants have large amounts of the late embryogenesis abundant protein (LEA) family of proteins, which is involved in osmotic regulation. The Korla Pear () is an uncommon pear species that thrives in Xinjiang and can survive below-freezing conditions. We found that the gene was more expressed after cold treatment by looking at the transcriptome data of the Korla Pear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!