The aim of this study was to analyze the contrast sensitivity of spatial luminance and the color discrimination thresholds of the protan, deutan, and tritan axes of people with leprosy. This study included 8 subjects with leprosy (M = 4, W = 4, M = 33.38 ± 8.7) and 8 healthy subjects (M = 4, W = 4, M = 30.89 ± 5.8). The contrast sensitivity was evaluated by the Metropsis software version 11.0 with vertical sinusoidal grids of frequencies of 0.2, 0.5, 1, 5, 10, and 16 cycles per degree of visual angle (cpd) and color vision by the desaturated Lanthony D15 tests and the trivector and ellipse protocols of the Cambridge Color Test. The results showed significant differences between the groups in the processing of spatial frequencies of 0.2 (U = 14; p = .018); 5.0 (U = 45.0; p = .001); 10.0 (U = 45.0; p = .001), and 16.0 (U = 45.0; p = .001) cpd. The difference in color recognition through D15d (U = 4.0; p = .002). Ellipse 2 (U = 10.0; p = .012) and ellipse 3 (U = 9.0; p = .009) were discriminated against. Overall, the results indicate that leprosy changes the visual processing of low, medium, and high spatial frequencies, as well as the sensitivity of the short wavelength (tritan line of confusion) and long (protan line of confusion) cones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368874 | PMC |
http://dx.doi.org/10.1186/s41155-020-00153-w | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Section on Perception, Cognition, Action, Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892.
To what extent does concept formation require language? Here, we exploit color to address this question and ask whether macaque monkeys have color concepts evident as categories. Macaques have similar cone photoreceptors and central visual circuits to humans, yet they lack language. Whether Old World monkeys such as macaques have consensus color categories is unresolved, but if they do, then language cannot be required.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Purpose: A relative afferent pupillary defect (RAPD) is a characteristic clinical sign of optic neuritis (ON). Here, we systematically evaluated ultrasound pupillometry (UP) for the detection of an RAPD in patients with ON, including a comparison with infrared video pupillometry (IVP), the gold standard for objective pupillometry.
Materials And Methods: We enrolled 40 patients with acute (n = 9) or past (n = 31) ON (ON+), 31 patients with multiple sclerosis (MS) without prior ON, and 50 healthy controls (HC) in a cross-sectional observational study.
PLoS One
January 2025
Faculty of Philosophy, Philosophy of Science and the Study of Religion, Ludwig Maximilian University of Munich, München, Germany.
Many visualisations used in the climate communication field aim to present the scientific models of climate change to the public. However, relatively little research has been conducted on how such data are visually processed, particularly from a behavioural science perspective. This study examines trends in visual attention to climate change predictions in world maps using mobile eye-tracking while participants engage with the visualisations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!