A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of novel oral ricobendazole formulation applying melting solidification printing process (MESO-PP): An innovative solvent-free alternative method for 3D printing using a simplified concept and low temperature. | LitMetric

Design of novel oral ricobendazole formulation applying melting solidification printing process (MESO-PP): An innovative solvent-free alternative method for 3D printing using a simplified concept and low temperature.

Int J Pharm

Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina. Electronic address:

Published: September 2020

This paper describes a melting solidification printing process (MESO-PP) capable of obtaining printed oral solid dosage forms in a safe, versatile, and robust manner avoiding the use of solvents and high temperatures. MESO-PP and Gelucire® 50/13 (fatty polyethylene glycol esters) as ink can be used to obtain a floating sustained-release system with the aim of improving the dissolution and absorption of drugs, such as ricobendazole (RBZ), which have a low and erratic bioavailability. Gelucire 50/13 can be considered a good material to formulate inks using MESO-PP. As a model, the RBZ allowed us to assess that there were no changes in crystallinity and the API-ink interactions were ruled out using TGA, DSC, XRD and FT-IR assays. A batch of printlets, obtained using MESO-PP, fulfilled USP requirements regarding uniformity of mass (827 ± 9 mg) and drug content (211 ± 5 mg). Hardness and friability were 39.23 ± 9.65 N and 1.07 ± 0.5% respectively, just above the 1% USP tablet-friability limit. It was possible to obtain tablets of different sizes with high precision (r = 0.995). In vitro dissolution test showed that the printlet had a sustained-release of RBZ (only 7% after 15 min), that erosion was the predominant mechanism for drug release (n-value of Korsmeyer-Peppas equation = 0.991; r = 0.99) and that changes in the internal structures modify the release. Consequently, MESO-PP can be considered an excellent alternative to obtain solid pharmaceutical dosage forms with variable geometries for different pharmaceutical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119653DOI Listing

Publication Analysis

Top Keywords

melting solidification
8
solidification printing
8
printing process
8
process meso-pp
8
dosage forms
8
meso-pp
6
design novel
4
novel oral
4
oral ricobendazole
4
ricobendazole formulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!