The contamination of arsenic (As) and cadmium (Cd) in paddy soils is widely reported and these two metals are difficult to be co-remediated due to the contrasting chemical behaviors. This poses a challenge to simultaneously decrease their availability in soil and accumulation in rice via immobilization by amendments, especially in in-situ fields. This study compared the effects of carbide slag, lodestone and biochar on the bioavailability of As and Cd in soil and their accumulation in rice tissues and root Fe-Mn plaque at tillering and mature stages in a paddy field. The addition of three amendments significantly limited the mobilization of As and Cd in soil and decreased their accumulations in brown rice by 30-52% and 9-21%, respectively. Carbide slag was most whereas lodestone least effective in As and Cd immobilization in the tested contaminated soils. Community Bureau of Reference (BCR) sequential extraction analysis showed that the amendments changed the forms of As and Cd to less-available. Activated functional groups of the amendments (e.g. -OH, C-O, OC-O, OH and CO) sequestered metals by precipitation, adsorption, ion exchange or electrostatic attributes contributed greatly to the As and Cd immobilization in soil. Furthermore, the amendments promoted the formation of Fe-Mn plaque in rice roots, which further limited the mobility of As and Cd in soil and prevented their transport from soil to rice roots. The application of carbide slag and biochar but not lodestone increased rice yield compared to the unamended control, indicating their applicability in situ remediation. Our study gives a strong reference to select immobilizing amendments for food safe production in co-contaminated paddy soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.115194 | DOI Listing |
Sci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
CSCEC Strait Construction and Development Co., Ltd., Fuzhou 350015, China.
Pre-mixed fluidized solidified soil (PFSS) has the advantages of pumpability, convenient construction, and a short setting time. This paper took the excavated loess in Fuzhou as the research object and used cement-fly-ash-ground granulated blast furnace slag-carbide slag as a composite geopolymer system (CFGC) to synthesize PFSS. This study investigated the fluidity and mechanical strength of PFSS under different water-solid ratios and curing agent dosages; finally, the microstructure of the composite geopolymer system-pre-mixed fluidized solidified soil (CFGC-PFSS) was characterized.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
The utilization of carbide slag, an industrial by-product, as a resource to prepare value-added products has a profound impact not only for sustainable synthesis and the circular economy but also for CO reduction. Herein, we report the very first example of the controlled multi-dimensional assembly of calcium carbonate particles at the micrometer scale with industrial by-product carbide slag and CO. Calcium carbonate particles of distinctly different sizes, shapes, and morphologies are obtained by finely tuning the assembly conditions.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Zhongtu Dadi International Architectural Design Co., Ltd., Shijiazhuang 050000, China.
Civil briquette furnace slag (FS), as a type of industrial solid waste, is not currently being recycled as a resource by the building materials industry. This study focuses on the potential of FS in the formulation of alkali-activated materials (AAMs) compared with calcium carbide slag (CS). This study encompasses three distinct AAM systems: alkali-activated fly ash alone (AAFA), fly ash-slag powder blends (AAFB), and slag powder alone (AABS).
View Article and Find Full Text PDFPLoS One
January 2025
Hebei Yingsheng New Material Technology Co., Ltd., Shijiazhuang, China.
Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!