Backgrounds & Aims: Alcohol-related liver disease (ALD) is a major cause of chronic liver disease worldwide with limited therapeutic options. Interleukin-1 receptor associated kinase 4 (IRAK4), the master kinase of Toll-like receptor (TLR)/IL-1R-mediated signalling activation, is considered a novel therapeutic target in inflammatory diseases, but has not been investigated in the context of ALD.
Methods: IRAK4 phosphorylation and IRAK1 protein were analysed in liver from alcohol-related hepatitis patients and healthy controls. IRAK4 kinase activity-inactive knock-in (Irak4 KI) mice and bone marrow chimeric mice were exposed to chronic ethanol-induced liver injury. IL-1β-induced IRAK4-mediated signalling and acute phase response were investigated in cultured hepatocytes. IRAK1/4 inhibitor was used to test the therapeutic potential for ethanol-induced liver injury in mice.
Results: Increased IRAK4 phosphorylation and reduced IRAK1 protein were found in livers of patients with alcoholic hepatitis. In the chronic ethanol-induced liver injury mouse model, hepatic inflammation and hepatocellular damage were attenuated in Irak4 KI mice. IRAK4 kinase activity promotes expression of acute phase proteins in response to ethanol exposure, including C-reactive protein and serum amyloid A1 (SAA1). SAA1 and IL-1β synergistically exacerbate ethanol-induced cell death ex vivo. Pharmacological blockage of IRAK4 kinase abrogated ethanol-induced liver injury, inflammation, steatosis, as well as acute phase gene expression and protein production in mice.
Conclusions: Our data elucidate the critical role of IRAK4 kinase activity in the pathogenesis of ethanol-induced liver injury in mice and provide preclinical validation for use of an IRAK1/4 inhibitor as a new potential therapeutic strategy for the treatment of ALD.
Lay Summary: Herein, we have identified the role of IRAK4 kinase activity in the development of alcohol-induced liver injury in mice. Hepatocyte-specific IRAK4 is associated with an acute phase response and release of proinflammatory cytokines/chemokines, which synergistically exacerbate alcohol-induced hepatocyte cell death ex vivo. Pharmacological inhibition of IRAK4 kinase activity effectively attenuates alcohol-induced liver injury in mice and could have therapeutic implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007112 | PMC |
http://dx.doi.org/10.1016/j.jhep.2020.07.016 | DOI Listing |
J Dent Sci
December 2024
Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
Background/purpose: Dysbiosis of oral microbiota has been reported in late stage of chronic hepatitis B (CHB) infection with cirrhosis. CHB is characterized by the constant virus-induced liver injury which may lead to liver cirrhosis and hepatocellular carcinoma (HCC). However, some patients show normal liver function without antiviral treatment, associating with favourable prognosis.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.
Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People's Republic of China.
Aim: Sepsis is a potentially fatal condition characterized by organ failure resulting from an abnormal host response to infection, often leading to liver and kidney damage. Timely recognition and intervention of these dysfunctions have the potential to significantly reduce sepsis mortality rates. Recent studies have emphasized the critical role of serum exosomes and their miRNA content in mediating sepsis-induced organ dysfunction.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Guang'anmen Hospital, China Academy of Chinese Medical Sciences Beijing 100053, China.
The prevalence of cardiovascular diseases in China has shown a rising trend. With the patient number of about 8.9 million, heart failure has brought a heavy burden to public health and wellness.
View Article and Find Full Text PDFClin Res Hepatol Gastroenterol
January 2025
School of Medicine, Wayne State University, Detroit, Michigan, USA.
Background And Aims: Several randomized clinical trials have been conducted assessing the potential efficacy of Farnesoid X receptor (FXR) agonists in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). A comprehensive review and analysis were needed to evaluate the findings of these trials. Hence, this systematic review and meta-analysis aim to study the association between FXR agonists and hepatic outcomes in patients with MASLD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!