Updates on inulinases: Structural aspects and biotechnological applications.

Int J Biol Macromol

Chembiotech Laboratories Ltd, WR15 8SG Tenbury Wells, United Kingdom.

Published: December 2020

Inulinases are inulin catalyzing enzymes which belongs to glycoside hydrolases (GH) family 32. Bacteria, fungi and yeasts are the potential sources of inulinases. In the present biotechnological era, inulinases are gaining considerable attention, due to their wide range of applications which includes the production of high fructose syrup, fructooligosaccharides and many other important metabolites like bioethanol, organic acids, single cell oil, 2,3-butanediol, single cell proteins, etc. These applications of inulinases have attracted the researchers world-wide to understand the inulin-inulinase interactions for polyfructan hydrolysis. To understand these interactions, the information on structural organization of inulinases is very important which is scarce in literature. The current review highlights the structural and functional properties of inulinases, and difference in their structural organization. The biotechnological potential of inulinases for the production of different bio-products from inulin/inulin-rich raw materials using different bioprocessing strategies has also been elaborated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.07.078DOI Listing

Publication Analysis

Top Keywords

applications inulinases
8
single cell
8
structural organization
8
inulinases
7
updates inulinases
4
structural
4
inulinases structural
4
structural aspects
4
aspects biotechnological
4
biotechnological applications
4

Similar Publications

The present study investigates the natural ability of Bacillus velezensis R22 to produce 2,3-BD from two inulin-rich substrates - insoluble and soluble chicory flour. After complex optimization of the media content and process parameters by consecutive application of Plackett-Burman design and response surface methodology, the strain R22 was capable of producing 71.2 g/L (95.

View Article and Find Full Text PDF

This study details the synthesis and optimization of extracellular inulinase through solid-state fermentation using improved strain of Rhizopus oligosporus. The wild-type was procured from IIB culture bank and subsequently enhanced through UV-radiation and Nitrous acid treatments. The resulting mutant strain was subjected to further optimization for heightened enzyme production via solid-state fermentation.

View Article and Find Full Text PDF

Microbial inulinase enzymes have a number of applications in biotechnology. In this study, new strains of Aspergillus welwitschiae were investigated as producers of inulinases and their endo- and exo-inulases were characterized in silico and their protein modeling was performed. The inulinase production by A.

View Article and Find Full Text PDF

Reinforcing thermostability and pH robustness of exo-inulinase facilitated by ReverseTag/ReverseCatcher tagging system.

Int J Biol Macromol

October 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. Electronic address:

Enhancing protein stability is pivotal in the field of protein engineering. Protein self-cyclization using peptide a tagging system has emerged as an effective strategy for augmenting the thermostability of target proteins. In this study, we utilized a novel peptide tagging system, ReverseTag/ReverseCatcher, which leverages intramolecular ester bond formation.

View Article and Find Full Text PDF

Fructose is a carbohydrate with essential applications in the food industry, mainly due to its high sweetness and low cost. The present investigation focused on optimising fructose production from commercial inulin using the enzymatic immobilisation method and applying the response surface methodology in a 12-run central composite design. The independent variables evaluated were the pH (-) and temperature (°C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!