Bioprosthetic heart valve (BHV) replacement is increasingly used for treating valve-related diseases worldwide but the current commercially used BHVs treated with glutaraldehyde (Glut) often failed within 12-15 years due to degradation, thrombosis, inferior biocompatibility, and calcification. Herein, 3-glycidyloxypropyl trimethoxysilane (GPTMS) was used to crosslink porcine pericardium (PP) at the concentration (vol/vol) of 0.25%, 1%, 2%, and 4% and their performance for potential application in BHVs was evaluated. The crosslinking mechanism mainly involved the ring-opening of epoxide by amine attack and silanol poly-condensation. The stability of collagen in higher concentration (1%, 2%, and 4%) GPTMS crosslinked PPs (GPTMS-PPs) was clearly increased. GPTMS-PPs showed no cytotoxicity and supported the growth of endothelial cells while Glut-PP did not. GPTMS-PPs were less prothrombotic than Glut-PP. GPTMS-PP crosslinked at 1% concentration showed comparable mechanical properties to Glut-PP while had better anti-tearing performance. The subcutaneous implantation in rat for 30 days showed that GPTMS crosslinking was able to effectively inhibit the calcification of BHV.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37061DOI Listing

Publication Analysis

Top Keywords

bioprosthetic heart
8
inorganic-polymerization crosslinked
4
crosslinked tissue-siloxane
4
tissue-siloxane hybrid
4
hybrid potential
4
potential biomaterial
4
biomaterial bioprosthetic
4
heart valves
4
valves bioprosthetic
4
heart valve
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!