Despite the high intrinsic ability of bone tissue to regenerate, bone healing fails in some pathological conditions and especially in the presence of large defects. Due to the strong relationship between bone development and vascularization during in vivo bone formation and repair, strategies promoting the osteogenic-angiogenic coupling are crucial for regenerative medicine. Increasing evidence shows that miRNAs play important roles in controlling osteogenesis and bone vascularization and are important tool in medical research although their clinical use still needs to optimize miRNA stability and delivery. Pulsed electromagnetic fields (PEMFs) have been successfully used to enhance bone repair and their clinical activity has been associated to their ability to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs). In this study we investigated the potential ability of PEMF exposure to modulate selected miRNAs involved in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). We show that, during in vitro hBMSC differentiation, PEMFs up-modulate the expression of miR-26a and miR-29b, which favor osteogenic differentiation, and decrease miR-125b which acts as an inhibitor miRNA. As PEMFs promote the expression and release of miRNAs also involved in angiogenesis, we conclude that PEMFs may represent a noninvasive and safe strategy to modulate miRNAs with relevant roles in bone repair and with the potential to regulate the osteogenic-angiogenic coupling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12015-020-10009-6 | DOI Listing |
Biomater Sci
January 2025
Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam.
Biphasic calcium phosphate (BCP) is a bioceramic widely used in hard tissue engineering for bone replacement. BCP consists of β-tricalcium phosphate (β-TCP) - a highly soluble and resorbable phase - and hydroxyapatite (HA) - a highly stable phase, creating a balance between solubility and resorption, optimally supporting cell interactions and tissue growth. The β-TCP/HA ratio significantly affects the resorption, solubility, and cellular response, with a higher β-TCP ratio increasing resorption due to its solubility.
View Article and Find Full Text PDFJ Formos Med Assoc
January 2025
Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China. Electronic address:
Background: Osteoporosis fracture is a common and most serious complication of osteoporosis.
Hypothesis: This study sought to assess the level, the diagnostic potential, and the effect of circulating miR-4534 in osteoporotic fractures.
Methods: GSE74209 and GSE93883 were analyzed using GEO2R online tool for differentially expressed microRNAs in osteoporotic fractures.
Nephrol Dial Transplant
January 2025
Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
Elevations in systemic phosphate levels, also called hyperphosphatemia, occur in chronic kidney disease (CKD) and during the normal aging process and are associated with various pathologies, such as cardiovascular injury. Experimental studies suggest that at high serum concentrations, phosphate can induce osteogenic differentiation of vascular smooth muscle cells and contribute to vascular calcification. However, the precise underlying mechanism leading to cardiovascular injury is not well understood.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
This study examines the effects of pulsed wave photobiomodulation (pwPBM) on the osteogenic differentiation of stem cells from the apical papilla (SCAP). Using 810 nm near-infrared (NIR) light with 300 Hz pulses and a 30% duty cycle, pwPBM was applied at a total energy density of 750 mJ/cm. Osteogenesis was evaluated through both in vitro and in vivo analyses.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!