Killer whales (Orcinus orca) are at risk from high levels of biomagnifying pollutants, such as polychlorinated biphenyls (PCBs) and mercury (Hg). Previous toxicological risk assessments for the Norwegian killer whale population have assumed fish as the primary prey source, and assessed the population as below established effect thresholds. However, some individuals have recently been identified to also feed on seals. This study is the first to quantify levels of pollutants in seal-eating killer whales from northern Norway, and to measure Hg levels in the skin of killer whales worldwide. We found higher levels of all pollutants in seal-eating than fish-eating killer whales, including the emerging brominated flame retardants pentabromoethylbenzene (PBEB), pentabromotoluene (PBT) and hexabromobenzene (HBB). Sum polychlorinated biphenyls (ΣPCBs) in the blubber of seal-eaters (n = 7, geometric mean = 46 µg/g l.w.) were four times higher than fish-eaters (n = 24, geometric mean = 11 µg/g l.w.), which pushed all seal-eating individuals above multiple thresholds for health effects. Total Hg levels in skin of seal-eaters (n = 10, arithmetic mean = 3.7 µg/g d.w.) were twice as high as in fish-eaters (n = 28, arithmetic mean = 1.8 µg/g d.w.). Our results indicate that by feeding on higher trophic prey, the Norwegian killer whale population is at higher risk of health effects from pollution than previously assumed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368030 | PMC |
http://dx.doi.org/10.1038/s41598-020-68659-y | DOI Listing |
Sci Total Environ
January 2025
Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada. Electronic address:
Mercury (Hg) and persistent organic pollutant (POP) accumulation among species and biomagnification through food webs is typically assessed using stable isotopes of nitrogen (δN) and carbon (δC) in bulk (whole) tissues. Yet, bulk isotopic approaches have limitations, notably from the potential overlap of isotope values from different dietary sources and from spatial variation in source (baseline) signals. Here, we explore the potential of fatty acid carbon isotopes (FA δC) to (1) evaluate the trophic structure of a marine food web, (2) distinguish feeding patterns among four marine mammal consumers, (3) trace contaminant biomagnification through a food web, and (4) explain interspecific variation in contaminants among high-trophic position predators.
View Article and Find Full Text PDFBehav Processes
December 2024
SeaWorld California, San Diego, CA, USA; SeaWorld Parks, Orlando, FL, USA.
Activity budget investigations are necessary to understand how individuals within a group manage their daily activities, thus providing insights into the social dynamics of a species. Our objective was to explore and describe the behavioral activities within a group of managed care killer whales. From 261 hours of coded surface video collected from April 2022 to January 2023, we scan-sampled day-time hours to examine eight behavioral categories exhibited by 8-9 killer whales bimonthly.
View Article and Find Full Text PDFArch Environ Contam Toxicol
December 2024
Ocean Wise Conservation Association, Vancouver, BC, Canada.
J Virol
December 2024
The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
Unlabelled: Anellovirus infections are ubiquitous in mammals but lack any clear disease association, suggesting a commensal virus-host relationship. Although anelloviruses have been identified in numerous mammalian hosts, their presence in members of the family Delphinidae has yet to be reported. Here, using a metagenomic approach, we characterize complete anellovirus genomes ( = 69) from four Delphinidae host species: short-finned pilot whale (, = 19), killer whale (, = 9), false killer whale (, = 6), and pantropical spotted dolphin (, = 1).
View Article and Find Full Text PDFJ Breath Res
December 2024
Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, USDA, PO Box 70, 1920 Dayton Avenue, Ames, IA 50010, United States of America.
The ocean is facing many anthropogenic stressors caused from both pollution and climate change. These stressors are significantly impacting and changing the ocean's ecosystem, and as such, methods must continually be developed that can improve our ability to monitor the health of marine life. For cetaceans, the current practice for health assessments of individuals requires live capture and release, which is expensive, usually stressful, and for larger species impractical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!