Extracellular vesicles from deciduous pulp stem cells recover bone loss by regulating telomerase activity in an osteoporosis mouse model.

Stem Cell Res Ther

Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.

Published: July 2020

Background: Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) recovers bone loss in animal models of osteoporosis; however, the mechanisms underlying this remain unclear. Here, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) rescue osteoporotic phenotype.

Methods: EVs were isolated from culture supernatant of SHED. SHED-EVs were treated with or without ribonuclease and systemically administrated into ovariectomized mice, followed by the function of recipient bone marrow mesenchymal stem cells (BMMSCs) including telomerase activity, osteoblast differentiation, and sepmaphorine-3A (SEMA3A) secretion. Subsequently, human BMMSCs were stimulated by SHED-EVs with or without ribonuclease treatment, and then human BMMSCs were examined regarding the function of telomerase activity, osteoblast differentiation, and SEMA3A secretion. Furthermore, SHED-EV-treated human BMMSCs were subcutaneously transplanted into the dorsal skin of immunocompromised mice with hydroxyapatite tricalcium phosphate (HA/TCP) careers and analyzed the de novo bone-forming ability.

Results: We revealed that systemic SHED-EV-infusion recovered bone volume in ovariectomized mice and improved the function of recipient BMMSCs by rescuing the mRNA levels of Tert and telomerase activity, osteoblast differentiation, and SEMA3A secretion. Ribonuclease treatment depleted RNAs, including microRNAs, within SHED-EVs, and these RNA-depleted SHED-EVs attenuated SHED-EV-rescued function of recipient BMMSCs in the ovariectomized mice. These findings were supported by in vitro assays using human BMMSCs incubated with SHED-EVs.

Conclusion: Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating postmenopausal osteoporosis by targeting the telomerase activity of recipient BMMSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367365PMC
http://dx.doi.org/10.1186/s13287-020-01818-0DOI Listing

Publication Analysis

Top Keywords

telomerase activity
20
human bmmscs
16
stem cells
12
ovariectomized mice
12
function recipient
12
activity osteoblast
12
osteoblast differentiation
12
sema3a secretion
12
recipient bmmscs
12
extracellular vesicles
8

Similar Publications

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

Detecting IDH and TERTp mutations in diffuse gliomas using H-MRS with attention deep-shallow networks.

Comput Biol Med

January 2025

Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey; Center for Neuroradiological Applications and Research, Acibadem University, Istanbul, Turkey.

Background: Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using proton magnetic resonance spectroscopy (H-MRS) and a one-dimensional convolutional neural network (1D-CNN) architecture.

Methods: This study included H-MRS data from 225 adult patients with hemispheric diffuse glioma (117 IDH mutants and 108 IDH wild-type; 99 TERTp mutants and 100 TERTp wild-type).

View Article and Find Full Text PDF

Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging.

View Article and Find Full Text PDF

Background: Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear.

View Article and Find Full Text PDF

Telomere biology disorders (TBDs) are inherited conditions associated with multisystem manifestations. We describe clinical and functional characterisation of a novel TERT variant. Whole-genome sequencing was performed along with single length analysis ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!