Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Realizing the topological bands of helical states poses a challenge in studying ultracold atomic gases. Motivated by the recent experimental success in realizing chiral optical ladders, here we present a scheme for synthesizing topological quantum matter, especially the quantum spin Hall phase, in the chiral optical ladders. More precisely, we first establish the synthetic pseudo-spin-orbit coupling and Zeeman splitting in the chiral ladders. After analyzing the band structure of the ladders exposed to the bichromatic optical potentials, we report the existence of quantum spin Hall phase. We further identify a rich phase diagram of the bichromatic chiral ladders, illustrating that our proposal features a large space of system parameters exhibiting quantum phase transitions. Our scheme is within reach of the existing ladder optical lattices and hence provides a new method to engineer the elaborate topological bands for cold atomic gases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.395756 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!