A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-throughput imaging surface plasmon resonance biosensing based on ultrafast two-point spectral-dip tracking scheme. | LitMetric

AI Article Synopsis

  • Wavelength interrogation surface plasmon resonance imaging (λSPRi) can detect biomolecular interactions but is limited by slow wavelength imaging rates.
  • The paper presents a new ultrafast λSPRi biosensor featuring a dual-point tracking algorithm, allowing it to measure resonance wavelengths in just 0.25 seconds, the fastest reported to date.
  • Experimental results indicate high sensitivity and the ability for rapid high-throughput biosensing, making it ideal for label-free detection of biomolecular interactions.

Article Abstract

Wavelength interrogation surface plasmon resonance imaging (λSPRi) has potential in detecting 2-dimensional (2D) sensor array sites, but the resonance wavelength imaging rate limits the application of detecting biomolecular binding process in real time. In this paper, we have successfully demonstrated an ultrafast λSPRi biosensor system. The key feature is a two-point tracking algorithm that drives the liquid crystal tunable filter (LCTF) to achieve fast-tracking of the resonance wavelength movement caused by the binding of target molecules with the probe molecules on the sensing surface. The resonance wavelength measurement time is within 0.25s. To date, this is the fastest speed ever reported in λSPRi. Experiment results show that the sensitivity and dynamic are 2.4 × 10 RIU and 4.6 × 10 RIU, respectively. In addition, we have also demonstrated that the system has the capability of performing fast high-throughput detection of biomolecular interactions, which confirms that this fast real-time detecting approach is most suitable for high-throughput and label-free biosensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.396656DOI Listing

Publication Analysis

Top Keywords

resonance wavelength
12
surface plasmon
8
plasmon resonance
8
resonance
5
high-throughput imaging
4
imaging surface
4
resonance biosensing
4
biosensing based
4
based ultrafast
4
ultrafast two-point
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!