This paper presents a method of using femtosecond laser inscribed nanograting as low-loss- and high-temperature-stable in-fiber reflectors. By introducing a pair of nanograting inside the core of a single-mode optical fiber, an intrinsic Fabry-Perot interferometer can be created for high-temperature sensing applications. The morphology of the nanograting inscribed in fiber cores was engineered by tuning the fabrication conditions to achieve a high fringe visibility of 0.49 and low insertion loss of 0.002 dB per sensor. Using a white light interferometry demodulation algorithm, we demonstrate the temperature sensitivity, cross-talk, and spatial multiplexability of sensor arrays. Both the sensor performance and stability were studied from room temperature to 1000°C with cyclic heating and cooling. Our results demonstrate a femtosecond direct laser writing technique capable of producing highly multiplexable in-fiber intrinsic Fabry-Perot interferometer sensor devices with high fringe contrast, high sensitivity, and low-loss for application in harsh environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.395382DOI Listing

Publication Analysis

Top Keywords

intrinsic fabry-perot
12
fabry-perot interferometer
8
high fringe
8
multiplexable high-temperature
4
high-temperature stable
4
stable low-loss
4
low-loss intrinsic
4
fabry-perot in-fiber
4
in-fiber sensors
4
nanograting
4

Similar Publications

An ultra-narrow-linewidth laser is a core device in fields such as optical atomic clocks, quantum communications, and microwave photonic oscillators. This paper reports an ultra-narrow-linewidth self-injection locked semiconductor laser, which is realized through optical feedback from a high-Q (258 million) Fabry-Perot (FP) cavity constructed with three mirrors, generating an output power of 12 mW. Employing a delay self-heterodyne method based on a signal source analyzer, the phase noise of the laser is -129 dBc/Hz at 100 kHz offset frequency, with an intrinsic linewidth of 3 mHz.

View Article and Find Full Text PDF

Microelectromechanical system (MEMS) Fabry-Perot fiber-integrated pressure sensor exhibits a compact size, intrinsic safety, and high precision measurement. Here, a MEMS Fabry-Perot interferometer sensor is presented. The sensor is fabricated using a standard microfabrication process with a uniformity of 80%.

View Article and Find Full Text PDF

Optical metasurfaces employing the Pancharatnam-Berry (PB) geometric phase, called PB metasurfaces, have been extensively applied to realize spin-dependent light manipulations. However, the properties of conventional PB metasurfaces are intrinsically limited by the Lorentz reciprocity. Breaking reciprocity can give rise to new properties and phenomena unavailable in conventional reciprocal systems.

View Article and Find Full Text PDF

Metal-organic framework modified open-cavity optical fiber Fabry-Pérot interferometer for volatile organic compound detection.

Talanta

January 2025

Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China. Electronic address:

Detection of volatile organic compounds (VOCs) is crucial in industrial production, environmental monitoring, and public safety. VOCs sensors need to be intrinsically safe, given the flammability and toxicity of common VOCs. Fiber optic sensors offer a passive and flexible solution for VOCs detection, attracting significant attention from researchers.

View Article and Find Full Text PDF

We propose and demonstrate a method for characterizing the individual mirror parameters of a fiber Fabry-Perot cavity (FFPC). By measuring the reflection and transmission spectra of the FFPC with an incident laser propagating from the two mirrors of the FFPC and considering several normal or unique losses, the transmittance, reflectance, and intra-cavity loss of the individual mirrors can be determined. Due to the intrinsic limitation of cavity length, traditional powerful methods, such as the cavity ring-down technique, are not applicable to FFPCs for characterizing the parameters of individual mirrors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!