We demonstrate an all-solid-state deep-ultraviolet (DUV) laser based on the frequency-quadrupling of a 1 µm, 1.2 ps, Yb: YAG Innoslab solid-state laser at a 10 kHz repetition rate, using LBO and BBO as second-harmonic generation and fourth-harmonic generation crystals, respectively. The DUV laser delivers 20 W, 2.0 mJ, 665 fs, 258 nm DUV pulses, with an overall conversion efficiency of ∼8.7% from 1 µm to DUV. The corresponding peak power of DUV pulses is up to 3 GW, which, to the best of our knowledge, is highest in reported kHz-rate all-solid-state DUV sources driven at 1 µm wavelength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.395948 | DOI Listing |
Angew Chem Int Ed Engl
September 2024
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China.
The exploration and research for deep-ultraviolet (UV) nonlinear optical (NLO) crystals are of great significance for all-solid-state lasers. This work is based on the excellent structural [BO] units which manipulate the excellent performances of famous commercial NLO crystal β-BaBO (β-BBO) to explore new alternatives of deep-UV NLO materials. A deep-UV rare-earth metal borate fluoride RbScBOF (RSBF) is successfully designed by combining the heterovalent ions substitution strategy, and fluorination strategy.
View Article and Find Full Text PDFWe report the recent progress on diode-pumped high-power continuous-wave Pr:LiYF (YLF) green laser and deep ultraviolet (DUV) laser generation via intracavity frequency doubling. Using two InGaN blue diode lasers as pump source to form a double-end pumping geometry, in this work, we have demonstrated a green laser at 522 nm with a maximum output power of 3.42 W, which is believed to be the highest power ever achieved in all-solid-state Pr lasers in this specific spectral region.
View Article and Find Full Text PDFA sulfur dioxide (SO) gas sensor based on the photoacoustic spectroscopy technology in a sulfur hexafluoride (SF) gas matrix was demonstrated for SF decomposition components monitoring in the power system. A passive Q-switching laser diode (LD) pumped all-solid-state 266 nm deep-ultraviolet laser was exploited as the laser excitation source. The photoacoustic signal amplitude is linear related to the incident optical power, whereas, a random laser power jitter is inevitable since the immature laser manufacturing technology in UV spectral region.
View Article and Find Full Text PDFA unique design of our ultracompact microcavity wavelength conversion device exploits the simple principle that the wavelength conversion efficiency is proportional to the square of the electric field amplitude of enhanced pump light in the microcavity, and expands the range of suitable device materials to include crystals that do not exhibit birefringence or ferroelectricity. Here, as a first step toward practical applications of all-solid-state ultracompact deep-ultraviolet coherent light sources, we adopted a low-birefringence paraelectric SrBO crystal with great potential for wavelength conversion and high transparency down to 130 nm as our device material, and demonstrated 234 nm deep-ultraviolet coherent light generation, whose wavelength band is expected to be used for on-demand disinfection tools that can irradiate the human body.
View Article and Find Full Text PDFis a ferroelectric nonlinear crystal with a very wide transparency window ranging from 125 nm to 13µ of the wavelength. Therefore, it is a candidate material to generate ultraviolet or deep ultraviolet laser, which is very important in lithography, semiconductor manufacturing, and advanced instrument development. Here, the second-order birefringence phase-matching processes of the crystal were studied, including second-harmonic generation (SHG) and sum-frequency generation (SFG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!