Vitamin D Prevents Pancreatic Cancer-Induced Apoptosis Signaling of Inflammatory Cells.

Biomolecules

Department of Medicine-DIMED, Laboratory Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.

Published: July 2020

Combined approaches based on immunotherapy and drugs supporting immune effector cell function might increase treatment options for pancreatic ductal adenocarcinoma (PDAC), vitamin D being a suitable drug candidate. In this study, we evaluated whether treatment with the vitamin D analogue, calcipotriol, counterbalances PDAC induced and SMAD4-associated intracellular calcium [Ca] alterations, cytokines release, immune effector function, and the intracellular signaling of peripheral blood mononuclear cells (PBMCs). Calcipotriol counteracted the [Ca] depletion of PBMCs induced by SMAD4-expressing PDAC cells, which conditioned media augmented the number of calcium flows while reducing whole [Ca]. While calcipotriol inhibited spontaneous and PDAC-induced tumor necrosis factor alpha (TNF-α) release by PBMC and reduced intracellular transforming growth factor beta (TGF-β), it did not counteract the lymphocytes proliferation induced in allogenic co-culture by PDAC-conditioned PBMCs. Calcipotriol mainly antagonized PDAC-induced apoptosis and partially restored PDAC-inhibited NF-κB signaling pathway. In conclusion, alterations induced by PDAC cells in the [Ca] of immune cells can be partially reverted by calcipotriol treatment, which promotes inflammation and antagonizes PBMCs apoptosis. These effects, together with the dampening of intracellular TGF-β, might result in an overall anti-tumor effect, thus supporting the administration of vitamin D in PDAC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408286PMC
http://dx.doi.org/10.3390/biom10071055DOI Listing

Publication Analysis

Top Keywords

immune effector
8
pbmcs calcipotriol
8
pdac cells
8
cells
5
pdac
5
calcipotriol
5
vitamin
4
vitamin prevents
4
prevents pancreatic
4
pancreatic cancer-induced
4

Similar Publications

This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR.

View Article and Find Full Text PDF

TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation.

Sci Immunol

January 2025

Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) have achieved great success; however, a subset of patients exhibits no response. Consequently, there is a critical need for reliable predictive biomarkers. Our focus is on CDC42, which stimulates multiple signaling pathways promoting tumor growth.

View Article and Find Full Text PDF

Circular mRNA Vaccine against SARS-COV-2 Variants Enabled by Degradable Lipid Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China.

The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein.

View Article and Find Full Text PDF

Cytotoxic lymphocytes are crucial to our immune system, primarily eliminating virus-infected or cancerous cells via perforin/granzyme killing. Perforin forms transmembrane pores in the plasma membrane, allowing granzymes to enter the target cell cytosol and trigger apoptosis. The prowess of cytotoxic lymphocytes to efficiently eradicate target cells has been widely harnessed in immunotherapies against haematological cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!