Blockchain for the Internet of Vehicles: A Decentralized IoT Solution for Vehicles Communication Using Ethereum.

Sensors (Basel)

Cedric Lab, Computer Science Department, Conservatoire National des Arts et Métiers, 75141 Paris, France.

Published: July 2020

The concept of smart cities has become prominent in modern metropolises due to the emergence of embedded and connected smart devices, systems, and technologies. They have enabled the connection of every "thing" to the Internet. Therefore, in the upcoming era of the Internet of Things, the Internet of Vehicles (IoV) will play a crucial role in newly developed smart cities. The IoV has the potential to solve various traffic and road safety problems effectively in order to prevent fatal crashes. However, a particular challenge in the IoV, especially in Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications, is to ensure fast, secure transmission and accurate recording of the data. In order to overcome these challenges, this work is adapting Blockchain technology for real time application (RTA) to solve Vehicle-to-Everything (V2X) communications problems. Therefore, the main novelty of this paper is to develop a Blockchain-based IoT system in order to establish secure communication and create an entirely decentralized cloud computing platform. Moreover, the authors qualitatively tested the performance and resilience of the proposed system against common security attacks. Computational tests showed that the proposed solution solved the main challenges of Vehicle-to-X (V2X) communications such as security, centralization, and lack of privacy. In addition, it guaranteed an easy data exchange between different actors of intelligent transportation systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411806PMC
http://dx.doi.org/10.3390/s20143928DOI Listing

Publication Analysis

Top Keywords

internet vehicles
8
smart cities
8
v2x communications
8
blockchain internet
4
vehicles decentralized
4
decentralized iot
4
iot solution
4
solution vehicles
4
vehicles communication
4
communication ethereum
4

Similar Publications

This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.

View Article and Find Full Text PDF

As the Internet of Things (IoT) expands globally, the challenge of signal transmission in remote regions without traditional communication infrastructure becomes prominent. An effective solution involves integrating aerial, terrestrial, and space components to form a Space-Air-Ground Integrated Network (SAGIN). This paper discusses an uplink signal scenario in which various types of data collection sensors as IoT devices use Unmanned Aerial Vehicles (UAVs) as relays to forward signals to low-Earth-orbit satellites.

View Article and Find Full Text PDF

Ensuring Reliable Network Communication and Data Processing in Internet of Things Systems with Prediction-Based Resource Allocation.

Sensors (Basel)

January 2025

Department of Computer Science and Systems Engineering, Faculty of Information and Communication Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.

The distributed nature of IoT systems and new trends focusing on fog computing enforce the need for reliable communication that ensures the required quality of service for various scenarios. Due to the direct interaction with the real world, failure to deliver the required QoS level can introduce system failures and lead to further negative consequences for users. This paper introduces a prediction-based resource allocation method for Multi-Access Edge Computing-capable networks, aimed at assurance of the required QoS and optimization of resource utilization for various types of IoT use cases featuring adaptability to changes in users' requests.

View Article and Find Full Text PDF

The Internet of Vehicles (IoV), a key component of smart transportation systems, leverages 5G communication for low-latency data transmission, facilitating real-time interactions between vehicles, roadside units (RSUs), and sensor networks. However, the open nature of 5G communication channels exposes IoV systems to significant security threats, such as eavesdropping, replay attacks, and message tampering. To address these challenges, this paper proposes the Efficient Cluster-based Mutual Authentication and Key Update Protocol (ECAUP) designed to secure IoV systems within 5G-enabled sensor networks.

View Article and Find Full Text PDF

Delay/Disruption Tolerant Networking Performance Characterization in Cislunar Relay Communication Architecture.

Sensors (Basel)

January 2025

Phillip M. Drayer Department of Electrical and Computer Engineering, Lamar University, Beaumont, TX 77710, USA.

Future 7G/8G networks are expected to integrate both terrestrial Internet and space-based networks. Space networks, including inter-planetary Internet such as cislunar and deep-space networks, will become an integral part of future 7G/8G networks. Vehicle-to-everything (V2X) communication networks will also be a significant component of 7G/8G networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!