The evaporation of surfactant-laden droplets: A comparison between contact line models.

J Colloid Interface Sci

Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Electronic address:

Published: November 2020

Hypothesis: There are two different sharp-interface models for moving contact lines: slip models and precursor film models. While both models predict a mostly constant contact angle during the evaporation of pure droplets, it is expected that they behave differently when surfactants are present, because of the inherent dissimilarities in their respective interface definitions.

Simulations: Both contact line models are numerically implemented using lubrication theory to analyze evaporating droplets. A convection-diffusion equation is implemented for insoluble surfactants. For pure droplets the models are compared with experiments performed by Nguyen et al. (2012).

Findings: The two contact line models show results comparable to the experiments with pure droplets. If insoluble surfactants are present, the slip model increasingly shows pinning-like behavior as the initial surfactant concentration is increased. This 'quasi-pinning' is found to be consistent with experimental results in literature. The precursor film model, in contrast, shows no significant change when surfactants are added. This lack of change is a result of surfactant flowing from the droplet into the precursor film and vice versa. While suggesting potential solutions to this unphysical behavior, it is concluded that in the context of surfactants, slip models are preferable over precursor film models given the current state of the art.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.06.099DOI Listing

Publication Analysis

Top Keywords

precursor film
16
contact models
12
pure droplets
12
models
10
slip models
8
film models
8
insoluble surfactants
8
surfactants slip
8
droplets
5
contact
5

Similar Publications

In area-selective atomic layer deposition (AS-ALD), small molecule inhibitors (SMIs) play a critical role in directing surface selectivity, preventing unwanted deposition on non-growth surfaces, and enabling precise thin-film formation essential for semiconductor and advanced manufacturing processes. This study utilizes grand canonical Monte Carlo (GCMC) simulations to investigate the competitive adsorption characteristics of three SMIs─aniline, 3-hexyne, and propanethiol (PT)─alongside trimethylaluminum (TMA) precursors on a Cu(111) surface. Single-component adsorption analyses reveal that aniline attains the highest coverage among the SMIs, attributed to its strong interaction with the Cu surface; however, this coverage decreases by approximately 42% in the presence of TMA, underscoring its susceptibility to competitive adsorption effects.

View Article and Find Full Text PDF

Reproducible large-area fabrication is one of the remaining challenges for the commercialization of perovskite photovoltaics. Imaging methods augmented with deep learning (DL) enable in-line detection of spatial or temporal inconsistencies and predict the impact of observed changes on device performance. In this work, we showcase three use cases of how DL augments complex experimental data analysis of the large-area perovskite thin film formation, even on moderate-sized datasets.

View Article and Find Full Text PDF

Dynamic Reconstruction of Fluid Interface Manipulated by Fluid Balancing Agent for Scalable Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.

Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.

View Article and Find Full Text PDF

Metal halide perovskite semiconductors have attracted considerable attention because they enable the development of devices with exceptional optoelectronic and electronic properties via cost-effective and high-throughput chemical solution processes. However, challenges persist in the solution processing of perovskite films, including limited control over crystallization and the formation of defective deposits, leading to suboptimal device performance and reproducibility. Tin (Sn) halide perovskite holds promise for achieving high-performance thin-film transistors (TFTs) due to its intrinsic high hole mobility.

View Article and Find Full Text PDF

Nanocellulose composites based on embedded europium-containing coordination polymers for the detection of antibiotics.

Int J Biol Macromol

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Developing sensitive and reliable methods for detecting antibiotics in water solutions is essential for protecting public health and the environment. Here, we report a novel fluorescent film with superior mechanical properties and detection response to ciprofloxacin (CIP), achieved through the in-situ growth of europium-based metal-organic frameworks on TEMPO-oxidized cellulose nanofibrils (TOCNF). Firstly, Eu(III) and 2,6-pyridinedicarboxylic acid (DPA) served as precursors, and a simple self-assembly strategy was employed to grow the composite film material (Eu-DPA@TOCNF) in situ on TOCNF, which exhibited characteristic emission peaks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!