Microbial fuel cell (MFC) technology is widely used to remediate heavy metal pollution of soil, and the applicability of soils with different physical and chemical properties under micro-electric field has not been studied. In this study, copper was effectively removed in four typical soil-filled MFCs. The removal efficiencies of copper from closed-circuit MFCs filled with paddy, red, black and alluvial soils were 2.9, 1.50, 3.48 and 3.40 times higher than those in the open-circuit control group, respectively. However, the contributions of electromigration and diffusion mechanisms were different under different soil types. The greatest copper removal (19.3 ± 0.8%) was achieved based on electromigration of the electric field inside the paddy soil MFC in 63 days, while the greatest copper removal (25 ± 2%) was achieved under the action of diffusion mechanism inside the red soil MFC. According to redundancy analysis, the removal of copper by electromigration was positively correlated with electricity generation performance and acid extractable Cu content, whereas copper removal based on diffusion was positively related to soil pore volume and acid extractable Cu content. The cation exchange capacity and total organic carbon of soil were negatively correlated with the acid extractable Cu content, and electrical conductivity of soil was positively correlated with the MFC electricity generation performance. Furthermore, the directional movement of protons under an electric field alleviated the issue of soil acidification caused by citric acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2020.107596 | DOI Listing |
J Environ Manage
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.
View Article and Find Full Text PDFWater Res
January 2025
China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China.
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
Background: In the fermentation industry, the demand to replace expensive complex media components is increasing for alternative nutrient sources derived from waste or side streams, such as corn steep liquor (CSL). However, the use of CSL is associated with common problems of side products, such as batch-to-batch variations and compositional inconsistencies. In this study, to detect batch-to-batch variations in CSL for Ogataea polymorpha cultivations, a "fingerprinting" system was developed by employing the Respiration Activity Monitoring System designed for shake flasks (RAMOS) and 96-well microtiter plates (µTOM).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China. Electronic address:
The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation.
View Article and Find Full Text PDFNano Lett
January 2025
College of Energy, Xiamen University, Xiamen 361102, China.
The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!