Xylosidases with tolerance to high concentration of salts, organic solvents, and enzyme hydrolytic products are preferential for industrial application but were rarely reported. In this study, a novel xylosidase XYL21 belong to glycoside hydrolase 39 was characterized with optimal temperature of 45 °C and optimal pH of 5.50. Different to other GH39 xylosidases, XYL21 had excellent tolerance to salts, the activity of which is not inhibited but slightly increased in 0.50-1.50 M NaCl. It is also tolerant to organic solvents, especially retaining 105.18% relative activity even in the presence of 15.00% (v/v) ethanol. Moreover, XYL21 was insensitive to the final lignocellulose hydrolysis products including glucose, xylose, arabinose, mannose and galactose, which retains 111.36% and 53.49% relative activity in 0.30 and 0.90 M xylose, respectively. Further structural modeling analysis indicated that its excellent tolerance may be attributed to its high structural flexibility caused by the high proportion of random coils. Furthermore, XYL21 had a wide substrate specificity to catalyze xylan and xylo-oligosaccharides, and it significantly cooperated with xylanase to improve the hydrolysis efficiency with 1.52-fold. Considering these unique properties, XYL21 is a good candidate for both basic research and various potential industrial applications such as seafood processing and bioethanol production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.07.079 | DOI Listing |
Pharmaceutics
December 2024
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Supercritical fluid technology is an innovative approach that has been extensively explored in various research fields, since it offers a way to limit or replace the use of organic solvents in numerous industrial processes [...
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid () and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid () have been synthesized. Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (H, C and Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha P.O. Box 2713, Qatar.
Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. This study investigates solubilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
Smart fibers with tunable luminescence properties, as a new form of visual output, present the potential to revolutionize personal living habits in the future and are receiving more and more attention. However, a huge challenge of smart fibers as wearable materials is their stretching capability for seamless integration with the human body. Herein, stretchable thermochromic fluorescent fibers are prepared based on self-crystallinity phase change, using elastic polyurethane (PU) as the fiber matrix, to meet the dynamic requirements of the human body.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Polymer Science & Engineering, Sichuan University, Chengdu 610065, China.
Poor breathability, inadequate flexibility, bulky wearability, and insufficient gas-adsorption capacity always limit the developments and applications of conventional chemical protective clothing (CPC). To create a lightweight, breathable, and flexible fabric with a high gas-absorption capacity, activated carbon (AC)-loaded poly(m-phenylene isophthalamide) (PMIA) porous composite fibres were fabricated from a mixed wet-spinning process integrated with a solvent-free phase separation process. By manipulating the pore parameters of as-spun composite fibres, the exposure-immobilization of AC particles on the fibre surface can offer a higher gas-absorption capacity and better AC-loading stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!