Chromosome segregation depends on a regulated connection between spindle microtubules and centromeric DNA. The kinetochore mediates this connection and ensures it persists during anaphase, when sister chromatids must transit into daughter cells uninterrupted. The Ctf19 complex (Ctf19c) forms the centromeric base of the kinetochore in budding yeast. Biochemical experiments show that Ctf19c members associate hierarchically when purified from cell extract [1], an observation that is mostly explained by the structure of the complex [2]. The Ctf3 complex (Ctf3c), which is not required for the assembly of most other Ctf19c factors, disobeys the biochemical assembly hierarchy when observed in dividing cells that lack more basal components [3]. Thus, the biochemical experiments do not completely recapitulate the logic of centromeric Ctf19c assembly. We now present a high-resolution structure of the Ctf3c bound to the Cnn1-Wip1 heterodimer. Associated live-cell imaging experiments provide a mechanism for Ctf3c and Cnn1-Wip1 recruitment to the kinetochore. The mechanism suggests feedback regulation of Ctf19c assembly and unanticipated similarities in kinetochore organization between yeast and vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2020.06.024DOI Listing

Publication Analysis

Top Keywords

biochemical experiments
8
ctf19c assembly
8
kinetochore
5
ctf19c
5
structural basis
4
basis kinetochore
4
kinetochore stabilization
4
stabilization cnn1/cenp-t
4
cnn1/cenp-t chromosome
4
chromosome segregation
4

Similar Publications

Growth and metabolic functions of Schizolobium amazonicum subjected to nickel doses.

Braz J Biol

January 2025

Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil.

Anthropic activities such as industries, agriculture and mining has generated public concern for its numerous irregular disposals of its waste, the incorrect deposition of heavy metals such as nickel (Ni) has caused the degradation and contamination of groundwater and water. Studies that point out cheap and efficient solutions have been an obstacle to the advancement of solutions for degraded area recovery programs. For this, a vegetable home experiment was developed, with an entirely randomized design with 5 treatments being a control (no metal) and 4 nickel concentrations (200 μM/L; 400 μM/L; 600 μM/L and 800 μM/L) with 6 repetitions.

View Article and Find Full Text PDF

Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.

View Article and Find Full Text PDF

is an opportunistic pathogen that can infect humans, animals and aquatic species, which is widely distributed in different aquatic environments and products. In recent years, with the rapid expansion of intensive aquaculture, the disease caused by has occurred. This study aims to understand the pathogenic characteristics of and provide scientific basis for the prevention and control of the epidemic.

View Article and Find Full Text PDF

Background: The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) belongs to a subfamily of the AP2/ERF (APETALA2/ethylene-responsive factor) superfamily, which can regulate many physiological and biochemical processes in plants, such as plant growth and development, hormone signal transduction and response to abiotic stress. Although the CBF/DREB1 family has been identified in many plants, studies of the CBF/DREB1 family in alfalfa are insufficient.

Results: In this study, 25 MsCBF genes were identified in the genome of alfalfa ("Zhongmu No.

View Article and Find Full Text PDF

Cardiac acetylcholinesterase and butyrylcholinesterase have distinct localization and function.

Am J Physiol Heart Circ Physiol

January 2025

Comenius University Bratislava, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Bratislava, Slovakia.

Cholinesterase (ChE) inhibitors are under consideration to be used in the treatment of cardiovascular pathologies. A prerequisite to advancing ChE inhibitors into the clinic is their thorough characterization in the heart. The aim here was to provide a detailed analysis of cardiac ChE to understand their molecular composition, localization, and physiological functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!