Dissecting MicroRNA-mRNA Regulatory Networks Underlying Sulfur Assimilation and Cadmium Accumulation in Poplar Leaves.

Plant Cell Physiol

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

Published: September 2020

The process of cadmium (Cd) accumulation and detoxification under different sulfur levels remains largely unknown in woody plants. To investigate the physiological and transcriptomic regulation mechanisms of poplars in response to different sulfate (S) supply levels and Cd exposure, we exposed Populus deltoides saplings to one of the low, moderate and high S levels together with either 0 or 50 µM Cd. Cd accumulation was decreased in low S-treated poplar leaves, and it tended to be increased in high S-supplied leaves under the Cd exposure condition. Sulfur nutrition was deficient in low S-supplied poplars, and it was improved in high S-treated leaves. Cd exposure resulted in lower sulfur level in the leaves supplied with moderate S, it exacerbated a Cd-induced sulfur decrease in low S-treated leaves and it caused a higher sulfur concentration in high S-supplied leaves. In line with the physiological changes, a number of mRNAs and microRNAs (miRNAs) involved in Cd accumulation and sulfur assimilation were identified and the miRNA-mRNA networks were dissected. In the networks, miR395 and miR399 members were identified as hub miRNAs and their targets were ATP sulfurylase 3 (ATPS3) and phosphate 2 (PHO2), respectively. These results suggest that Cd accumulation and sulfur assimilation are constrained by low and enhanced by high S supply, and Cd toxicity is aggravated by low and relieved by high S in poplar leaves, and that miRNA-mRNA regulatory networks play pivotal roles in sulfur-mediated Cd accumulation and detoxification in Cd-exposed poplars.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcaa084DOI Listing

Publication Analysis

Top Keywords

sulfur assimilation
12
poplar leaves
12
regulatory networks
8
sulfur
8
cadmium accumulation
8
leaves
8
accumulation detoxification
8
low s-treated
8
high s-supplied
8
s-supplied leaves
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!