The aim of the present study was to evaluate the combined effects of noise and air temperature on the human body neurophysiological responses. This study was conducted on 35 male students, who were exposed to four different air temperatures (18 °C, 22 °C, 26 °C, and 30 °C) and two noise levels (55 dBA and 75 dBA) in eight sessions in a simulated indoor environment. The mean values of accuracy and time of response to stimuli in N-back test as well as neurophysiological responses were measured. In the studied experiment configurations, with increasing air temperature and noise, the working memory and neurophysiological responses were disturbed. The results indicated the significant effect of noise on working memory, as compared with that of air temperature. The effects of air temperature on heart rate, respiratory rate as well as theta and alpha bands were more significant than the impact of noise. The combined effects of noise and air temperature were more significant than the influence of each of them alone. In the presence of high noise levels, the increase in air temperature did not worsen the response accuracy. However, in the presence of high noise level, the rise in air temperature aggravated the mean value of neurophysiological responses. Overall, noise has a greater effect on working memory, while the air temperature can disturb neurophysiological responses in a more profound way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apergo.2020.103189 | DOI Listing |
Sci Rep
December 2024
Department of Electrical Engineering, College of Engineering, Taif University, P.O. BOX 11099, 21944, Taif, Saudi Arabia.
Weather recognition is crucial due to its significant impact on various aspects of daily life, such as weather prediction, environmental monitoring, tourism, and energy production. Several studies have already conducted research on image-based weather recognition. However, previous studies have addressed few types of weather phenomena recognition from images with insufficient accuracy.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, USA.
Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe) across microns at room temperature via steady-state pump-probe measurement.
View Article and Find Full Text PDFEcol Lett
January 2025
Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.
View Article and Find Full Text PDFACS ES T Eng
January 2024
Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States.
The COVID-19 pandemic has resulted in significant changes in our daily lives, including the widespread use of face masks. Face masks have been reported to reduce the transmission of viral infections by droplets; however, improper use and/or treatment of these masks can cause them to be contaminated, thereby reducing their efficacy. Moreover, regular replacement of face masks is essential to maintaining their effectiveness, which can be challenging in resource-limited healthcare settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!