Six-Fold Vertices in a Single-Component Organic Ferroelectric with Most Equivalent Polarization Directions.

J Am Chem Soc

Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.

Published: August 2020

Topological defects such as vortices in ferroelectric materials are attracting tremendous interest because of their splendid possibilities for unique physical phenomena and potential applications in nanoelectronic devices. However, reports of the vortex structure have been scarce in organic ferroelectrics, which are highly desirable for their mechanical flexibility, easy and environment-friendly processing, and low acoustical impedance. Here, we successfully observed the robust triangular domains in a single-component organic ferroelectric, 2-(hydroxymethyl)-2-nitro-1,3-propanediol (), six of which can form a 6-fold vertex domain structure. To our knowledge, it is the first time that such an intriguing topological vortex gets experimentally confirmed in ferroelectrics. Moreover, the symmetry change of with an Aizu notation of 3F1 leads to the most 48 crystallographically equivalent polarization directions among all ferroelectrics. With those benefits and excellent piezoelectric properties, compound shows great potential as a reconfigurable electronic element or a mechanical sensor for soft robotics, flexible and wearable devices, and biomachines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c06936DOI Listing

Publication Analysis

Top Keywords

single-component organic
8
organic ferroelectric
8
equivalent polarization
8
polarization directions
8
six-fold vertices
4
vertices single-component
4
ferroelectric equivalent
4
directions topological
4
topological defects
4
defects vortices
4

Similar Publications

Metal-organic frameworks for the separation of xylene isomers.

Chem Soc Rev

January 2025

Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Xylene isomers, including -xylene (X), -xylene (X), -xylene (X), and ethyl benzene (EB), are important raw materials in industry. The separation of xylene isomers has been recognized as one of the "seven chemical separations to change the world". However, because of their similar physicochemical properties, totally separating four xylene isomers has remained a big challenge until now.

View Article and Find Full Text PDF

Because of the existence of moisture in indoor air, it is still a serious challenge to capture formaldehyde indoors with the metal-organic material Fe-HHTP-MOF. To explore the relationship between the structure and performance of Fe-HHTP-MOF in dry and humid air, molecular dynamics simulation was used to study the adsorption amount of Fe-HHTP-MOF for formaldehyde and water under different temperatures and adsorption pressures, as well as the adsorption amount of Fe-HHTP-MOF for formaldehyde in the presence of both water and formaldehyde, and the differences in adsorption of formaldehyde and water by Fe-HHTP-MOF were compared and analyzed when water coexisted. The results show that under single-component isothermal adsorption, the hydrogen bond energy formed by Fe-HHTP-MOF adsorbing HO molecules is much greater than the van der Waals energy formed by adsorbing HCHO molecules.

View Article and Find Full Text PDF

Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).

View Article and Find Full Text PDF

This study focuses on enhancing solar energy capture efficiency by introducing innovative hybrid nanofluids for use in solar thermal collectors, whose performance largely depends on the absorption properties of the working fluid. The newly developed hybrid nanofluids, MXene/NH2-UiO66 (Zr) (noted as MX/UO66) and MXene/MIL-88B (Fe) (noted as MX/ML88), were synthesized using an in-situ solvothermal method, combining annealed Ti3C2Tx MXenes with water-stable metal-organic frameworks (MOFs). These nanofluids achieved high efficiency at low concentrations, providing both economic and performance benefits.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!