Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The predominant bean iron (Fe) biofortification approach is to breed for high Fe concentration and assumes the average Fe concentration is 50 μg/g. This approach also assumes that a 40 μg/g increase is sustainable and Fe bioavailability will not decrease to negate the increase in Fe.
Objective: The overall objective was to determine if bean Fe biofortification via breeding for high Fe is producing beans with higher Fe concentration relative to nonbiofortified lines found in the East Africa marketplace.
Methods: Seventy-six marketplace samples (East Africa Marketplace Collection; EAMC), and 154 genotypes known to be representative of the marketplace were collected from breeders in the Pan-Africa Bean Research Alliance (designated the East Africa Breeder Collection; EABC). Within the EAMC and EABC were 18 and 35 samples, respectively, that were released as biofortified lines. All samples were measured for Fe concentration. The Caco-2 cell bioassay assessed Fe bioavailability of the EAMC. Biofortified versus nonbiofortified samples were compared by the appropriate t-test or ANOVA.
Results: The Fe concentration of the 58 nonbiofortified EAMC lines was (mean ± SD [range]) 71 ± 9 μg/g (52-93 μg/g) which did not differ significantly from the 18 biofortified EAMC varieties (71 ± 11 μg/g [55-94 μg/g]). The Fe concentration of the 119 nonbiofortified EABC varieties was 66 ± 7 μg/g (51-90 μg/g) which was significantly different (P < 0.0001) from the 35 EABC biofortified lines (73 ± 9 μg/g [60-91 μg/g]). However, the EABC biofortified lines were not different from the nonbiofortified EAMC samples. In the Caco-2 cell bioassay, biofortified EAMC varieties did not deliver more Fe compared with nonbiofortified EAMC varieties.
Conclusions: The assumptions of the high Fe bean biofortification approach are not met in the East African marketplace. Iron concentration and bioavailability measurement indicate the biofortified bean varieties are providing no additional dietary Fe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/nxaa193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!