Sulfur doped LiAlTi(PO) solid electrolytes with enhanced ionic conductivity and a reduced activation energy barrier.

Phys Chem Chem Phys

Engineering Faculty, Metallurgy and Materials Engineering Department, Sakarya University, 54187 Sakarya, Turkey. and Research, Development and Application Center (SARGEM), Sakarya University, 54187, Sakarya, Turkey and NESSTEC Energy & Surface Technology A.S., Technology Development Zones, Sakarya University, 54050, Sakarya, Turkey.

Published: August 2020

Recently, tailored synthesis of solid electrolytes satisfy multiple challenges, i.e. high ionic conductivity and wide (electro)chemical stability window is of great interest. Although both oxide- and sulfide-based solid electrolytes have distinguished merits for meeting such concerns separately, a new solid electrolyte having the excellent aspects of both materials is pursued. Herein, we report the synthesis of a sulfur-doped Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid electrolyte with a NASICON crystal structure that combines elevated ionic conductivity with intrinsic stability against an ambient atmosphere. Sulfur doping was carried out using sulfur-amine chemistry and the system was characterized by XRD, Raman, XPS, ICP-OES, and EDS analyses. Bader charge analysis was carried out with the aid of density functional theory calculations to characterize charge accumulation in the local environment of the bare and sulfur doped LATP structures. Our results indicate that the partial replacement of oxygen with sulfur yields higher ionic conductivity due to the lower electronegativity of sulfur compared to oxygen, which reduces the attraction of lithium ions. The enhanced ionic conductivity of LATP is attributed to a decreased lithium ion diffusion activation energy barrier upon sulfur doping. Compared to bare LATP, the as-prepared sulfur doped LATP powders were shown to decrease the activation energy barrier by 10.1%. Moreover, an ionic conductivity of 5.21 × 10-4 S cm-1 was obtained for the sulfur doped LATP powders, whereas bare LATP had an ionic conductivity of 1.02 × 10-4 S cm-1 at 40 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03442hDOI Listing

Publication Analysis

Top Keywords

ionic conductivity
28
sulfur doped
16
solid electrolytes
12
activation energy
12
energy barrier
12
doped latp
12
sulfur
8
enhanced ionic
8
solid electrolyte
8
sulfur doping
8

Similar Publications

Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.

View Article and Find Full Text PDF

Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.

View Article and Find Full Text PDF

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

Enhanced Performance and Durability of Pore-Filling Membranes for Anion Exchange Membrane Water Electrolysis.

Membranes (Basel)

December 2024

Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.

Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the commercial membrane, despite being nearly half as thin. Ion conductivity measurements revealed that acrylamide-based membranes outperformed benzyl-based ones, exhibiting 25% and 41% higher conductivity when using crosslinkers with two and three crosslinking sites, respectively.

View Article and Find Full Text PDF

This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!