Specifiable biomimetic microsponges for timed release of crystal entrapped biomolecules useful in bone repair.

J Mater Chem B

University of Technology, Sydney, School of Life Sciences, Translational Biomaterials and Medicine Group, Broadway, 2007 NSW, Australia.

Published: August 2020

Most marine materials, by nature, contain crystals of inorganic matter with specific structures that allow the loading, release, and delivery of biomolecules that can be utilized in clinical applications. These structures can be biomimetically synthesized. Aggregates of inorganic particles generated by biomimetic microsponges may provide surfaces and structures for cell attachment, organization, and promotion of matrix synthesis. Biomimetic microsponges have been developed with tunable release profiles differing by the rate (speed over distance), velocity (rate of change in direction), and the quantity discharged over time, according to biomolecular species. Specifically, the types of proteins involved guide and regulate cells in physical contact with the microsponges, for instance, reprogramming somatic cells, the switching phenotypes, or specifying stem cell differentiation. Applications for these microsponges include gene transfection of localized cells and promotion of bone matrix synthesis by the externalized display of RGD cell adhesive peptides and the release of crystal entrapped, occluded, adsorbed and infused rhBMP-2 and plasmid. A requirement for de novo bone formation is a solid structure to enable osteocytes to lay new bone tissue. In this study, biomimetic microsponges highlight tremendous potential as osteoconductive packing material in bone repair with parallel influence on regeneration. Majorly, microsponges offer pronounced osteoinductivity, unlike many other bone particulates, by solid-state integration of active regenerative biological molecules through the prism of the biomineral crystalline structure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb01491eDOI Listing

Publication Analysis

Top Keywords

biomimetic microsponges
16
release crystal
8
crystal entrapped
8
bone repair
8
matrix synthesis
8
microsponges
7
bone
6
specifiable biomimetic
4
microsponges timed
4
release
4

Similar Publications

Specifiable biomimetic microsponges for timed release of crystal entrapped biomolecules useful in bone repair.

J Mater Chem B

August 2020

University of Technology, Sydney, School of Life Sciences, Translational Biomaterials and Medicine Group, Broadway, 2007 NSW, Australia.

Most marine materials, by nature, contain crystals of inorganic matter with specific structures that allow the loading, release, and delivery of biomolecules that can be utilized in clinical applications. These structures can be biomimetically synthesized. Aggregates of inorganic particles generated by biomimetic microsponges may provide surfaces and structures for cell attachment, organization, and promotion of matrix synthesis.

View Article and Find Full Text PDF

Fabrication of Three-Dimensional Scaffolds Based on Nano-biomimetic Collagen Hybrid Constructs for Skin Tissue Engineering.

ACS Omega

August 2018

Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Department of Nanotechnology, Faculty of Advanced Medical Sciences, Department of Biotechnology, Faculty of Advanced Medical Sciences, Stem Cell Research Center, Student Research Committee, and Drug Applied Research Center, Tabriz University of Medical Sciences, 5154853431 Tabriz, Iran.

Three-dimensional (3D) biodegradable and biomimetic porous scaffolds are ideal frameworks for skin tissue engineering. In this study, hybrid constructs of 3D scaffolds were successfully fabricated by the freeze-drying method from combinations of the type I collagen (Col) and synthetic poly(lactic acid) (PLLA) or polycaprolactone (PCL). Four different groups of 3D porous scaffolds including PCL, PCL-Col, PCL-PLLA, and PCL-PLLA-Col were fabricated and systematically characterized by hydrogen nuclear magnetic resonance, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

The integration of microfabrication and biomaterials enables construction of miniaturized 3D microenvironments with biomimetic micro-architectural and functional features to advance cell-based assays for mechanism investigation of physio/pathology and for prediction of drug responses. However, current biomaterials-assisted constructions of miniaturized 3D cellular microenvironments usually involve cells in the microfabrication process, limiting their wide application in most biomedical labs, where expertise and facilities are not readily available. Here we tackle this challenge by developing off-the-shelf microsponge arrays as pre-formed micro-patterned templates which can separate the microfabrication steps from the cell-handling steps and miniaturize the cell-based assays.

View Article and Find Full Text PDF

While silk-based microfibrous scaffolds possess excellent mechanical properties and have been used for ligament tissue-engineering applications, the microenvironment in these scaffolds is not biomimetic. We hypothesized that coating a hybrid silk scaffold with an extracellular matrix (ECM)-like network of self-assembling peptide nanofibers would provide a biomimetic three-dimensional nanofibrous microenvironment and enhance ligament tissue regeneration after bone marrow-derived mesenchymal stem cell (BMSC)-seeding. A novel scaffold possessing a triple structural hierarchy comprising macrofibrous knitted silk fibers, a silk microsponge, and a peptide nanofiber mesh was developed by coating self-assembled RADA16 peptide nanofibers on a silk microfiber-reinforced-sponge scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!