The study of factors influencing animal intake can provide a better understanding of the dynamics of the pasture ecosystem and serve as a basis for managing livestock in a more efficient way. We measured different sward surface heights of tall fescue in the process of short-term intake rate of sheep. There was a significant effect of sward surface height on herbage mass (P < 0.001), leaf lamina mass (P < 0.001), other species mass (P = 0.02), bite mass (P = 0.01) and short-term intake rate (P = 0.03) of sheep. There was a quadratic fit between time per bite and bite mass (P = 0.006). Multivariate analysis showed that the short-term intake rate and bite mass were positively correlated (r = 0.97), bite rate and total jaw movement rate were positively correlated but both were negatively correlated with time per bite. The sward surface height of tall fescue corresponding to the maximum short-term herbage intake rate was 22.3 cm. The underlying processes were driven by the bite mass, which was influenced by the leaf lamina bulk density and its consequences upon time per bite. This sward surface height can be adopted as a pre-grazing target for rotational stocking systems to optimize sheep nutrition on pastures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366922 | PMC |
http://dx.doi.org/10.1038/s41598-020-68827-0 | DOI Listing |
MicroPubl Biol
December 2024
Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States.
Tall fescue ( ) is a widely adopted forage and turf grass. This is partly due to a fungal endophyte, which confers both abiotic and biotic stress tolerance. Although PCR primers exist to test for endophyte presence, these were not designed to quantitatively analyze the amount of fungus in the plant.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau, Urumqi 830052, China.
The granite rubble soil produced through excavation during construction is nutrient-poor and has a simplified microbial community, making it difficult for plants to grow and increasing the challenges of ecological restoration. Recent studies have demonstrated that microbial inoculants significantly promote plant growth and are considered a potential factor influencing root development. Microorganisms influence root development either directly or indirectly, forming beneficial symbiotic relationships with plant roots.
View Article and Find Full Text PDFPhysiol Plant
December 2024
College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, P.R. China.
Hydrogen sulfide (HS) functions as a signaling molecule affecting plant growth, development, and stress adaptation. Tall fescue (Festuca arundinacea Schreb.), a bioenergy crop, encounters significant challenges in agricultural production owing to low light by shading.
View Article and Find Full Text PDFTransl Anim Sci
November 2024
Bayer Crop Science, St. Louis, MO, USA 63141-7843.
Winter wheat ( L.) is a significant forage source for livestock grazing in the Southern Great Plains (SGP). However, increasing input costs and changing climate conditions compel producers and researchers to search for alternative forage systems, such as cool-season perennials.
View Article and Find Full Text PDFEnviron Geochem Health
November 2024
University of Leicester, University Road, Leicester, LE1 7RH, UK.
Although phytoremediation is more economical when compared with traditional physical and chemical soil remediation methods, it remains very expensive when considering the substantial area of the contaminated field. If the quantity of harvested residues can be reduced after each phytoremediation cycle, the practicability and commercial implementation of this environment friendly method can be improved. In this study, cadmium excretion on the leaf surface of Festuca arundinacea was evaluated under various blue and red light conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!