To determine the distribution of dissolved organic matter (DOM) in the East China Sea (ECS) during the summer, we measured the dissolved organic carbon (DOC) and nitrogen (DON), fluorescent dissolved organic matter (FDOM), and chlorophyll a (Chl. a) in the upper 100-m layer of this region during July and September 2015. The DOC (r = 0.72 and 0.78 in July and September, respectively) and DON (r = 0.43 and 0.33) were significantly correlated with salinity, suggesting that the river is the primary origin of DOM. However, we found that at a DOC "pulse" under a salinity ranging from 24 to 35, the extrapolating DOC values (304 ± 11 μM) were twice higher than those with a salinity of close to 0, as found in a previous study. The excess DOC concentration seemed to be attributed to the microbial metabolism during transport from the estuary based on the good relationships between DOC and marine humic-like FDOM (r = 0.42 and 0.47), as well as the fluorescence, humification, and biological indexes, but showed no correlation with Chl. a. Thus, the results of our study indicate that microbial activities can be a significant factor controlling the distribution of DOM in the ECS during summer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366708 | PMC |
http://dx.doi.org/10.1038/s41598-020-68863-w | DOI Listing |
Sci Rep
December 2024
Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.
Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan. Electronic address:
Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, China. Electronic address:
Karstification can reduce the CO concentration in the atmosphere/soil. Accurate estimation of karst carbon sinks is crucial for the study of global climate change. In this study, the Lijiang River Basin was taken as the research area.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy.
According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain.
View Article and Find Full Text PDFSci Rep
December 2024
Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.
Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!