This study investigates the physical and chemical mechanisms during the resistive switching process by means of obtaining the activation energy in the reaction procedure. From the electrochemical and electrical measurement analysis results of HfO2-based resistive random access memory (RRAM), it can be observed that the chemical reaction during the reset process is consistent with the first-order reaction law. The activation energy, Ea, is determined from the reaction rate constant k under a varying-temperature environment in the reset process. The whole reset chemical reaction process can be divided into five phases involving N-O bond breaking, O-O bond breaking and triple-step oxygen ion migration. The methodology of the activation energy determination carried out in this study showcases a distinct approach to elucidate the resistive switching mechanism of RRAM and offers insight into RRAM design for future potential application.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr04053cDOI Listing

Publication Analysis

Top Keywords

activation energy
16
resistive switching
12
physical chemical
8
chemical mechanisms
8
mechanisms resistive
8
switching process
8
chemical reaction
8
reset process
8
bond breaking
8
process
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!