A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardiac Ischemic Preconditioning Promotes MG53 Secretion Through HO-Activated Protein Kinase C-δ Signaling. | LitMetric

Cardiac Ischemic Preconditioning Promotes MG53 Secretion Through HO-Activated Protein Kinase C-δ Signaling.

Circulation

State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (D.S., S.G., H.-K.W., F. Lv, L.J., M.Z., P.X., Y.W., Y.S., X.H., C.-M.C., Y.Z., R.-P.X.), Peking University, China.

Published: September 2020

Background: Ischemic heart disease is the leading cause of morbidity and mortality worldwide. Ischemic preconditioning (IPC) is the most powerful intrinsic protection against cardiac ischemia/reperfusion injury. Previous studies have shown that a multifunctional TRIM family protein, MG53 (mitsugumin 53; also called TRIM72), not only plays an essential role in IPC-mediated cardioprotection against ischemia/reperfusion injury but also ameliorates mechanical damage. In addition to its intracellular actions, as a myokine/cardiokine, MG53 can be secreted from the heart and skeletal muscle in response to metabolic stress. However, it is unknown whether IPC-mediated cardioprotection is causally related to MG53 secretion and, if so, what the underlying mechanism is.

Methods: Using proteomic analysis in conjunction with genetic and pharmacological approaches, we examined MG53 secretion in response to IPC and explored the underlying mechanism using rodents in in vivo, isolated perfused hearts, and cultured neonatal rat ventricular cardiomyocytes. Moreover, using recombinant MG53 proteins, we investigated the potential biological function of secreted MG53 in the context of IPC and ischemia/reperfusion injury.

Results: We found that IPC triggered robust MG53 secretion in rodents in vivo, perfused hearts, and cultured cardiac myocytes without causing cell membrane leakage. Mechanistically, IPC promoted MG53 secretion through HO-evoked activation of protein kinase-C-δ. Specifically, IPC-induced myocardial MG53 secretion was mediated by HO-triggered phosphorylation of protein kinase-C-δ at Y311, which is necessary and sufficient to facilitate MG53 secretion. Functionally, systemic delivery of recombinant MG53 proteins to mimic elevated circulating MG53 not only restored IPC function in MG53-deficient mice but also protected rodent hearts from ischemia/reperfusion injury even in the absence of IPC. Moreover, oxidative stress by HO augmented MG53 secretion, and MG53 knockdown exacerbated HO-induced cell injury in human embryonic stem cell-derived cardiomyocytes, despite relatively low basal expression of MG53 in human heart.

Conclusions: We conclude that IPC and oxidative stress can trigger MG53 secretion from the heart via an HO-protein kinase-C-δ-dependent mechanism and that extracellular MG53 can participate in IPC protection against cardiac ischemia/reperfusion injury.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044998DOI Listing

Publication Analysis

Top Keywords

mg53 secretion
36
mg53
18
ischemia/reperfusion injury
16
secretion
9
ipc
9
ischemic preconditioning
8
protection cardiac
8
cardiac ischemia/reperfusion
8
ipc-mediated cardioprotection
8
underlying mechanism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!