During environmental change, invasive species may be favored by increased resource input or reduced resource use of the resident community. Plasticity in certain plant traits of invasive species may be one possible mechanism behind their ability to quickly exploit unused resources. We tested whether rainfall manipulations (severe drought, moderate drought, watering) alter the growth and reproductive success of the invasive annual Conyza canadensis, and if it translates into a change in the abundance of the species in a semiarid perennial grassland in Central Hungary. Overall, C. canadensis exhibited greater individual performance and higher abundance in drought plots than in control and watered plots. At individual level, plants showed the strongest response to moderate drought: they grew 2.5-times taller than in control and watered plots, and produced twice and 2.5-times more seeds than in watered and control plots, respectively. Reproductive phenology was advanced in response to rain exclusions. Although severe drought caused 40% mortality, the cumulative performance of C. canadensis, expressed as plot-level aboveground biomass, was consistently greater in severe drought plots than in control and watered plots throughout the 3 years of the study. The higher performance of C. canadensis in drought plots is most likely due to the decreased abundance and, thus, decreased competitive effect of previously dominant perennial grasses caused by the rain exclusions. We conclude that drier summers that suppress perennial grasses will favor this alien annual forb, and phenotypic plasticity in growth and reproduction may contribute to its invasion success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406490 | PMC |
http://dx.doi.org/10.1007/s00442-020-04711-y | DOI Listing |
Front Plant Sci
December 2024
Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italia.
Drought impacts trees in varied temporal and spatial patterns, suggesting that heterogeneity of below-ground water stores influences the fate of trees under water stress. Karst ecosystems rely on shallow soil overlying bedrock that can store available water in primary pores. A contribution of rock moisture to tree water status has been previously demonstrated, but actual mechanisms and rates of rock-to-root water delivery remain unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Guangxi Forestry Research Institute, Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Nanning, P. R. China.
The impact of seasonal short-term drought on plant physiology and resilience is crucial for conservation and management strategies. This study investigated drought stress effects on growth, photosynthetic capacity, and physiological responses of Camphor (Cinnamomum camphora) seedlings in Guangxi province, China. Fertilized potted plants underwent continuous drought treatments to assess varying water supply effects.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Buildings and Construction Techniques Engineering, College of Engineering, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq.
The land use transition plays an important role for terrestrial environmental services, which had a mixed impact of positive and negative on the groundwater and terrestrial water resource. The health of ecological systems and groundwater depends on the mapping and management of land use. The Ganga basin is one of the most densely populated and agriculture-intensive river systems in the South Asia and the world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!