Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stroke causes severe long-term disability in patients due to the induction of skeletal muscle atrophy and weakness, but the molecular mechanisms remain elusive. Using a preclinical mouse model of cerebral ischemic stroke, we show that stroke robustly induced atrophy and significantly decreased SirT1 gene expression in the PTA (paralytic tibialis anterior) muscle. Muscle-specific SirT1 gain-of-function mice are resistant to stroke-induced muscle atrophy and this protective effect requires its deacetylase activity. Although SirT1 counteracts the stroke-induced up-regulation of atrogin1, MuRF1 and ZNF216 genes, we found a mechanism that regulates the ZNF216 gene transcription in post-stroke muscle. Stroke increased the expression of the ZNF216 gene in PTA muscle by activating PARP-1, which binds on the ZNF216 promoter. The SirT1 gain-of-function or SirT1 activator, resveratrol, reversed the PARP-1-mediated up-regulation of ZNF216 expression at the promoter level, suggesting a contradicted role for SirT1 and PARP-1 in the regulation of ZNF216 gene. Overall, our study for the first-time demonstrated that (a) stroke causes muscle atrophy, in part, through the SirT1/PARP-1/ZNF216 signaling mechanism; (b) SirT1 can block muscle atrophy in response to different types of atrophic signals via different signaling mechanisms; and (c) SirT1 is a critical regulator of post-stroke muscle mass.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354693 | PMC |
http://dx.doi.org/10.1096/fba.2020-00017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!