Background: Previous study has reported that loss of epithelial androgen receptor (AR) may promote tumor progression and cause TRAMP mouse model die earlier. The detail mechanisms, however, remain unclear.

Methods: Immunohistochemistry assay, Western blot and real-time PCR were used to detect the expression of epithelial and mesenchymal markers. RNA extraction, RT-PCR, quantitative RT-PCR, BrdU incorporation assays, flow cytometry and other experimental technics were also used in present work.

Results: Decreased expression of epithelial markers (Cytokeratin 8, NKX3.1 and E-cadherin) and increased expression of mesenchymal markers (α-SMA, Vimentin, and N-cadherin) in were found in AR knockout TRAMP tumors. Further investigation indicated that AR signal deprivation is associated with cell morphology transition, high cell mobility, high cell invasion rate and resistance to anoikis in TRAMP prostate tumor cells. Together, these findings implied knockout AR in TRAMP prostate tumor may lead to EMT, which may result in earlier metastasis, and then cause TRAMP mice die earlier. TGF-β1 is responsible for EMT in AR knockout TRAMP tumor cells.

Conclusions: In conclusion, ADT therapy induced hormone refractory prostate cancer may gain the ability of metastasis through cell's EMT which is a phase of poor differentiation. Anti-EMT drugs should be developed to battle the tumor metastasis induced by ADT therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354287PMC
http://dx.doi.org/10.21037/tau.2020.03.02DOI Listing

Publication Analysis

Top Keywords

knockout tramp
12
loss epithelial
8
prostate cancer
8
die earlier
8
expression epithelial
8
mesenchymal markers
8
high cell
8
tramp prostate
8
prostate tumor
8
adt therapy
8

Similar Publications

Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis.

View Article and Find Full Text PDF

Prostate cancer is the most commonly diagnosed malignancy and the third leading cause of cancer deaths. GWAS have identified variants associated with prostate cancer susceptibility; however, mechanistic and functional validation of these mutations is lacking. We used CRISPR-Cas9 genome editing to introduce a missense variant identified in the ELAC2 gene, which encodes a dually localised nuclear and mitochondrial RNA processing enzyme, into the mouse Elac2 gene as well as to generate a prostate-specific knockout of Elac2.

View Article and Find Full Text PDF

Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression.

Cell Death Dis

July 2022

Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China.

Prostate cancer (PCa) is a malignant tumor that seriously threatens men's health worldwide. Recently, stromal cells in the tumor microenvironment (TME) have been reported to contribute to the progression of PCa. However, the role and mechanism of how PCa cells interact with stromal cells to reshape the TME remain largely unknown.

View Article and Find Full Text PDF

Metastases account for the majority of prostate cancer (PCa) deaths, and targeting them is a major goal of systemic therapy. We identified a novel interaction between two kinases: tousled-like kinase 1 (TLK1) and MAP kinase-activated protein kinase 5 (MK5) that promotes PCa spread. In PCa progression, TLK1-MK5 signalling appears to increase following antiandrogen treatment and in metastatic castration-resistant prostate cancer (mCRPC) patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!