Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) are the standard treatment for advanced ALK-positive non-small cell lung cancer (NSCLC) allowing survivals up to 5 years. However, duration of responses is limited by the almost certain occurrence of drug resistance. Here, we report a case of a never smoker, 59-year-old female with metastatic ALK-positive adenocarcinoma, solid and signet ring patterns, who developed resistance to alectinib, a second-generation ALK-TKI, mediated by gene amplification. The patient received 22 months of crizotinib as first-line and subsequently 1-year of alectinib therapy. A study of resistance mechanism was performed with next generation sequencing (NGS) on tissue re-biopsy. A -amplified emerging clone was identified by NGS in a liver metastasis and confirmed by fluorescent hybridization (FISH) analysis. The resistant clone was detectable 2 months before disease progression in plasma cell-free DNA (cfDNA) using digital droplet PCR (ddPCR) copy number variation (CNV) assay and it was retrospectively traced in rare cells of the lung primary by FISH. To our best knowledge, this is first evidence of gene amplification as a resistance mechanism to ALK-TKI in a NSCLC. Future strategies against oncogene-addicted NSCLC might benefit of combined drug treatments, such as ALK and HER2 inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354139 | PMC |
http://dx.doi.org/10.21037/tlcr.2020.04.03 | DOI Listing |
Sci Rep
December 2024
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).
View Article and Find Full Text PDFSci Rep
December 2024
Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Riad El-Solh, PO Box 11-0236, 1107 2020, Beirut, Lebanon.
Fatigue is one of the most prevalent and disabling symptoms among patients with MS, but there is limited research investigating the longitudinal determinants of fatigue progression. This study aims to identify the sociodemographic, behavioral and clinical characteristics, and therapeutic regimens that are correlated with worsening fatigue over time in patients diagnosed with MS. This is a retrospective chart review of 483 patients.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Pathogenic activating mutations in the fibroblast growth factor receptor 3 (FGFR3) drive disease maintenance and progression in urothelial cancer. 10-15% of muscle-invasive and metastatic urothelial cancer (MIBC/mUC) are FGFR3-mutant. Selective targeting of FGFR3 hotspot mutations with tyrosine kinase inhibitors (e.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.
View Article and Find Full Text PDFNat Commun
December 2024
GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China.
Cell type deconvolution methods can impute cell proportions from bulk transcriptomics data, revealing changes in disease progression or organ development. But benchmarking studies often use simulated bulk data from the same source as the reference, which limits its application scenarios. This study examines batch effects in deconvolution and introduces SCCAF-D, a computational workflow that ensures a Pearson Correlation Coefficient above 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!