Establishing the Structure-Activity Relationship of Daptomycin.

ACS Med Chem Lett

Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong.

Published: July 2020

Daptomycin is effective in treating infections caused by antibiotic-resistant Gram-positive pathogens, including methicillin-resistant (MRSA), vancomycin-resistant (VRE), and vancomycin-resistant (VRSA). Due to its distinct mechanism of action toward multidrug-resistant bacteria, daptomycin provides an attractive structural motif to generate new daptomycin-based antibiotics to combat the problem of bacterial resistance. In this study, we used the total synthesis method to produce daptomycin analogues with a variety in terms of types and sites of modifications. Five classes of daptomycin analogues were synthesized, and the antimicrobial activities of the analogues were analyzed by several biological assays. From this study, we established a comprehensive structure-activity relationship of daptomycin which will lay the foundation for the further development of daptomycin-based antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357220PMC
http://dx.doi.org/10.1021/acsmedchemlett.0c00175DOI Listing

Publication Analysis

Top Keywords

structure-activity relationship
8
relationship daptomycin
8
daptomycin-based antibiotics
8
daptomycin analogues
8
daptomycin
6
establishing structure-activity
4
daptomycin daptomycin
4
daptomycin effective
4
effective treating
4
treating infections
4

Similar Publications

Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex.

Food Res Int

February 2025

Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China. Electronic address:

Effects of catechins with different structure characteristics on the structure and properties of gluten-catechin covalent complex were investigated, and the structure-activity relationship was further explored. Catechins including epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG) could successfully covalently bind with gluten through C-N and/or C-S bonds. The physicochemical properties of covalent complex, including particle size, thermal stability, content of free amino groups, free sulfhydryl groups and disulfide bonds, were significantly affected by different catechins, and the action order was: EGCG > ECG > EGC > EC.

View Article and Find Full Text PDF

Salinization processes profoundly impact soil quality and health, altering physical structure, chemical composition, and biological activity, particularly concerning soil microbial populations. Microbial communities play a pivotal role in maintaining soil ecosystem multifunctionality (EMF). Understanding the response of microbial communities to salinity stress is crucial for sustainable soil management and enhancing ecosystem resilience in arid and semi-arid regions.

View Article and Find Full Text PDF

Design of pH-responsive and amphiphilic pullulan-based biological macromolecule for gene delivery.

Int J Biol Macromol

January 2025

Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:

Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.

View Article and Find Full Text PDF

Heterocyclic chemistry gathered a wide audience due to their presence in potential drug candidates and being attractive synthons initiating several retro-syntheses the organic as well as in medicinal chemistry fields. Among them, azetidinones have been a subject of discussion due to their serendipity, curiosity, versatility by Penicillin and Cephalosporins as β-lactam antibiotics. Despite possessing a large margin of biological activities, azetidinones mainly work as antimicrobial, interfering with bacterial cell-wall synthesis blocking transpeptidase.

View Article and Find Full Text PDF

Structural insights into nucleocapsid protein variability: Implications for PJ34 efficacy against SARS-CoV-2.

Virology

January 2025

Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. Electronic address:

Human coronaviruses (HCoVs) include common cold viruses such as HCoV-229E, OC43, NL63 and HKU1 as well as MERS-CoV and SARS-CoV, which cause severe respiratory disease. Recently, SARS-CoV-2 caused a COVID-19 pandemic. The nucleocapsid (N) protein of coronaviruses, which is essential for RNA binding and homodimerization, has a highly conserved structure across viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!