The energy source shift-down described in the preceding paper (Molin et al., J. Bacteriol. 131: 7-17, 1977) was used to study the effects of shift-down on protein synthesis. The overall rate of protein synthesis was reduced immediately, and to the same extent, in stringent and relaxed strains. The primary effect of the shift was a slowing down of the polypeptide chain growth rate, a finding not previously reported. In stringent strains the normal, preshift rate was reestablished within 2 to 3 min, whereas in relaxed strains the chain growth rate remained low for about 20 min before slowly returning to the normal value, which was reestablished some 50 to 60 min after the shift. Throughout this transition, the stability of messenger ribonucleic acid (mRNA) remained unchanged in both strains. We interpret these findings as evidence of the more rapid reduction of the mRNA pool in the stringent strain after shift-down: we believe that very soon after the shift, the stringent strain reduces its pool of mRNA and with it the number of ribosomes engaged in protein synthesis. In this manner the number of active ribosomes is adjusted to the availability of energy and carbon. The relaxed strain cannot rapidly reduce its mRNA pool, which thus remains large enough to engage a near-preshift number of ribosomes during a prolonged period; as a consequence its ribosomes must work at a reduced rate. The possibility that ppGpp is involved in the control of mRNA production is discussed. After shift-down, the initial part of beta-galactosidase (the auto-alpha fragment) was produced at a higher rate than complete beta-galactosidase in the relaxed strain, as expected when translation is impeded.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC235385 | PMC |
http://dx.doi.org/10.1128/jb.131.1.18-29.1977 | DOI Listing |
Enzyme Microb Technol
January 2025
Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:
There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy. Electronic address:
Cinnamic Acid Sugar Ester Derivatives (CASEDs) are a class of natural compounds that exhibit several interesting biological activities. However, to date, no examples of their use in sunscreen formulations have been reported. Here, we describe the synthesis of a series of novel cinnamic acid esters of glucose (4a-g), ribose (4h) and lactose (4i) starting from the respective acetals 3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115.
The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Discovery Research Platform for Hidden Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK.
The coronavirus HCoV-OC43 circulates continuously in the human population and is a frequent cause of the common cold. Here, we generated a high-resolution atlas of the transcriptional and translational landscape of OC43 during a time course following infection of human lung fibroblasts. Using ribosome profiling, we quantified the relative expression of the canonical open reading frames (ORFs) and identified previously unannotated ORFs.
View Article and Find Full Text PDFPLoS One
January 2025
Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!