Post-translational histone modifications regulate chromatin compaction and gene expression to control many aspects of development. Mutations in genes encoding regulators of H3K4 methylation are causally associated with neurodevelopmental disorders characterized by intellectual disability and deficits in motor functions. However, it remains unclear how H3K4 methylation influences nervous system development and contributes to the aetiology of disease. Here, we show that the catalytic activity of , the homologue of the H3K4 methyltransferase KMT2F/G (SETD1A/B) genes, controls embryonic transcription of neuronal genes and is required for establishing proper axon guidance, and for neuronal functions related to locomotion and learning. Moreover, we uncover a striking correlation between components of the H3K4 regulatory machinery mutated in neurodevelopmental disorders and the process of axon guidance in Thus, our study supports an epigenetic-based model for the aetiology of neurodevelopmental disorders, based on an aberrant axon guidance process originating from deregulated H3K4 methylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7420840 | PMC |
http://dx.doi.org/10.1242/dev.190637 | DOI Listing |
Curr Issues Mol Biol
December 2024
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy.
Histone methyltransferase NSD2 (MMSET) overexpression in multiple myeloma (MM) patients plays an important role in the development of this disease subtype. Through the expansion of transcriptional activating H3K36me2 and the suppression of repressive H3K27me3 marks, NSD2 activates an aberrant set of genes that contribute to myeloma growth, adhesive and invasive activities. NSD2 transcriptional activity also depends on its non-catalytic domains, which facilitate its recruitment to chromatin through histone binding.
View Article and Find Full Text PDFJBMR Plus
January 2025
Division of Orthodontics, Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States.
Environ Pollut
December 2024
Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China. Electronic address:
Nanoplastics (NPs) exposure could disrupt the synthesis of steroid hormones, thereby posing a potential threat to male reproductive health. However, the existing comprehension of the molecular mechanisms participating in this process remains limited, and the reversibility of NPs-triggered male reproductive toxicity is poorly understood. This investigation focused on the impact of histone modification on testosterone production in mice under long-term exposure to environmentally relevant doses of polystyrene nanoplastics (PS-NPs).
View Article and Find Full Text PDFJ Hepatocell Carcinoma
December 2024
Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People's Republic of China.
Purpose: Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Oncofetal proteins are the optimal diagnostic biomarkers and therapeutic targets for HCC. As the most abundant modification in RNA, N-methyladenosine (mA) has been reported to be involved in HCC initiation and progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!