Plethodontid salamanders inhabit terrestrial, scansorial, arboreal and troglodytic habitats in which clinging and climbing allow them to access additional food and shelter as well as escape from unfavorable temperature and moisture conditions and ground-dwelling predators. Although salamanders lack claws and toe pads found in other taxa, they successfully cling to and climb on inclined, vertical and inverted substrates in nature. Maximum cling angle was tested on smooth acrylic, and the relationship between cling angle, body mass and surface area of attachment (contact area) was investigated. This study found that many salamander species can cling fully inverted using only a portion of their ventral surface area to attach. Salamanders fall into three functional groups based on mass and maximum cling angle: (1) high-performing, very small salamanders, (2) moderately high performing small and medium-sized salamanders and (3) low-performing large salamanders. They show significant differences in maximum cling angle, even between species of similar mass. In species of similar mass experiencing significantly different detachment stress (resulting from significantly different contact area), differences in morphology or behavior affect how much body surface is attached to the substrate. High performance in some species, such as , is attributable to large contact area; low performance in a similarly sized species, , is due to behavior that negatively impacts contact area. There was no clear evidence of scaling of adhesive strength with increasing body size. Salamander maximum cling angle is the result of morphology and behavior impacting the detachment stresses experienced during clinging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.211706 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!