This study was conducted to investigate the impacts of dietary energy and protein on rumen bacterial composition and ruminal metabolites. A total of 12 ruminal samples were collected from Shaanbei white cashmere goats which were divided into two groups, including high-energy and high-protein (Group H; crude protein, CP: 9.37% in dry matter; metabolic energy, ME: 9.24 MJ/kg) and control (Group C; CP: 8.73%; ME: 8.60 MJ/kg) groups. Thereby, 16S rRNA gene sequencing and a quantitative polymerase chain reaction were performed to identify the rumen bacterial community. Metabolomics analysis was done to investigate the rumen metabolites and the related metabolic pathways in Groups C and H. The high-energy and high-protein diets increased the relative abundance of phylum Bacteroidetes and genera _1 and , while decreasing the number of Proteobacteria ( < 0.05). The dominant differential metabolites were amino acids, peptides, and analogs. Tyrosine metabolism played an important role among the nine main metabolic pathways. Correlation analysis revealed that both _1 ( = 0.608, < 0.05) and _2 ( = 0.613, < 0.05) showed a positive correlation with catechol. Our findings revealed that the diets with high energy and protein levels in Group H significantly altered the composition of ruminal bacteria and metabolites, which can help to improve the dietary energy and protein use efficiency in goats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401628PMC
http://dx.doi.org/10.3390/ani10071193DOI Listing

Publication Analysis

Top Keywords

rumen bacterial
12
energy protein
12
bacterial community
8
cashmere goats
8
dietary energy
8
composition ruminal
8
high-energy high-protein
8
metabolic pathways
8
alterations rumen
4
community metabolome
4

Similar Publications

Capsaicin Modulates Ruminal Fermentation and Bacterial Communities in Beef Cattle with High-Grain Diet-Induced Subacute Ruminal Acidosis.

Microorganisms

January 2025

Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

This study was developed with the goal of exploring the impact of capsaicin on ruminal fermentation and ruminal bacteria in beef cattle affected by high-grain diet-induced subacute ruminal acidosis (SARA). In total, 18 healthy Simmental crossbred cattle were randomized into three separate groups ( = 6/group): (1) control diet (CON; forage-to-concentrate ratio = 80:20); (2) high-grain diet (SARA; forage-to-concentrate ratio = 20:80); and (3) high-grain diet supplemented with capsaicin (CAP; 250 mg/cattle/day). The study was conducted over a 60-day period.

View Article and Find Full Text PDF

Rumen Bacterial Community Responses to Three DHA Supplements: A Comparative In Vitro Study.

Animals (Basel)

January 2025

Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China.

The aim of this study was to investigate the loss of docosahexaenoic acid (DHA) from three supplements (two powders and one oil) after digestion (rumen and gastrointestinal) and their effects on the number and composition of rumen bacteria, using an in vitro approach. The concentration of supplements has a significant impact on the DHA loss rate and algal oil exhibited the highest rate of loss, but bioaccessibility was not significantly different from the other supplements. 16S rRNA sequencing showed that three DHA supplements altered the bacterial composition of in vitro batch cultures inoculated with rumen microorganisms from cows, and caused changes in the relative abundance of important bacterial phyla, families, and genera.

View Article and Find Full Text PDF

Background: This research aimed to investigate differences in rumen fermentation characteristics between Karakul sheep and Hu sheep reared under identical conditions. The test subjects included newborn Hu and Karakul sheep, which were monitored across three stages: stage I (Weaning period: 15 ~ 30 days), stage II (Supplementary feeding period: 31 ~ 90 days), and stage III (Complete feeding period: 91 ~ 150 days). During the supplementary feeding period, cottonseed hulls were the main roughage source.

View Article and Find Full Text PDF

The current study investigated the in vitro degradability, in vitro gas production, methane (CH) production, and ruminal bacterial community of kenaf plants cut at different heights (130, 160, 190, 220, and 250 cm). These samples were subjected to an in vitro batch culture system using buffalo rumen fluid to measure gas and CH production at 3, 6, 9, 12, 24, 36, 48, and 72 h of incubation. Results reveal that crude protein (CP) concentration was the highest at the 220 cm height compared with the other heights.

View Article and Find Full Text PDF

Background: While Gangba sheep being well known for their unique flavour and nutritional value, harsh environmental factors negatively affect their growth and development, leading to poor productivity. The gastrointestinal tract microbiota plays an important role in host nutrient absorption and metabolism. The identification of dynamic changes in the gastrointestinal microbial communities and their functions is an important step towards improving animal production performance and health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!