A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Greedy based convolutional neural network optimization for detecting apnea. | LitMetric

Background And Objective: Sleep apnea is a common sleep disorder, usually diagnosed using an expensive, highly specialized, and inconvenient test called polysomnography. A single SpO2 sensor based on an automated classification system can be developed to simplify the apnea detection. The main objective of this work is to develop a classifier based on a convolution neural network with the capability of detecting apnea events from one dimensional SpO2 signal. However, to find an optimum convolution neural network structure is a daunting task is usually done by a trial-and-error method. To solve this problem, a method is proposed to save time and simplify the process of searching for an optimum convolution neural network structure.

Methods: Greedy based optimization is proposed to search for an optimized convolution neural network structure. Three different variants of greedy based optimization are proposed: the topology transfer, the weighted-topology transfer with rough estimation, and the weighted-topology transfer with fine tuning. The subject independent and the cross-database test are performed for the analysis.

Results: Considering the balance between the execution time and the performance, the weighted-topology transfer with rough estimation is the best. An accuracy of 88.49% for the HuGCDN2008 database and 95.14% for the Apnea-ECG database are obtained for apnea events detection per minute. Regarding the apnea patient detection, also referred to as global classification, an accuracy of 95.71% is achieved for the HuGCDN2008 database, and 100% is achieved for the AED database without removing any subjects from both databases.

Conclusions: The proposed one-dimensional convolution neural network performs better in a similar situation than those presented in the literature. The greedy based methods, mainly the weighted-topology transfer with rough estimation, is an alternative method to extensive trial and error method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2020.105640DOI Listing

Publication Analysis

Top Keywords

neural network
24
convolution neural
20
greedy based
16
weighted-topology transfer
16
transfer rough
12
rough estimation
12
detecting apnea
8
apnea events
8
optimum convolution
8
network structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!