Currently, antimicrobial photodynamic therapy (APDT) is limited to the local treatment of topical infections, and a platform that can deliver the photosensitizer to internal organs is highly desirable for non-local ones; SPIONs can be promising vehicles for the photosensitizer. This work reports an innovative application of methylene blue (MB)-superparamagnetic iron oxide nanoparticles (SPIONs). We report on the preparation, characterization, and application of MB-SPIONs for antimicrobial photodynamic therapy. When exposed to light, the MB photosensitizer generates reactive oxygen species (ROS), which cause irreversible damage in microbial cells. We prepare SPIONs by the co-precipitation method. We cover the nanoparticles with a double silica layer - tetraethyl orthosilicate and sodium silicate - leading to the hybrid material magnetite-silica-MB. We characterize the as-prepared SPIONs by Fourier transform infrared spectroscopy, powder X-ray diffraction, and magnetic measurements. We confirm the formation of magnetite using powder X-ray diffraction data. We use the Rietveld method to calculate the average crystallite size of magnetite as being 14 nm. Infrared spectra show characteristic bands of iron‑oxygen as well as others associated with silicate groups. At room temperature, the nanocomposites present magnetic behavior due to the magnetite core. Besides, magnetite-silica-MB can promote ROS formation. Thus, we evaluate the photodynamic activity of FeO-silica-MB on Escherichia coli. Our results show the bacteria are completely eradicated following photodynamic treatment depending on the MB release time from SPIONs and energy dose. These findings encourage us to explore the use of magnetite-silica-MB to fight internal infections in preclinical assays.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2020.111956DOI Listing

Publication Analysis

Top Keywords

iron oxide
8
oxide nanoparticles
8
escherichia coli
8
antimicrobial photodynamic
8
photodynamic therapy
8
powder x-ray
8
x-ray diffraction
8
spions
5
methylene blue-covered
4
blue-covered superparamagnetic
4

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.

View Article and Find Full Text PDF

This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.

View Article and Find Full Text PDF

Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!