Optimising phosphor screens in dose detectors or imaging sensor designs is a cumbersome and time- consuming work normally involving specialised measuring equipment and advanced modelling. It is known that crucial optical parameters of the same phosphor may vary within a wide range of values. The aim of this work was to experimentally assess a simple previously published model where the case specific optical parameters (scattering and absorption) are instead represented by a fixed, single parameter, the light extinction factor, ξ. The term extrinsic efficiency, N, of a phosphor is also introduced, differing from the common denotation "absolute efficiency", after noting that unknown factors (such as temperature dependence) can have an influence during efficiency estimations and hence difficult to claim absoluteness. N is expressed as the ratio of light energy emitted per unit area at the phosphor surface to incident x-ray energy fluence. By focusing on ratios and relative changes in this study, readily available instruments in a Medical Physics Department (i.e. a photometer) could be used. The varying relative extrinsic efficiency for an extended range of particle sizes (7.5 and 25 µm) and layer thicknesses (220 to 830 µm) were calculated in the model from the input parameters: the mean particle size of the phosphor, the layer thickness, the light extinction factor and the calculated energy imparted to the layer. In-house manufactured screens (GdOS:Tb) were used for better control of design parameters. The model provided good qualitative agreement to experiment with quantitative deviations in relative extrinsic efficiency within approximately 2%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2020.07.009DOI Listing

Publication Analysis

Top Keywords

extrinsic efficiency
16
relative extrinsic
12
optical parameters
8
light extinction
8
extinction factor
8
phosphor
6
efficiency
5
experimental assessment
4
assessment phosphor
4
model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!